题目内容
已知奇函数f(x)是定义在(-2,2)上的减函数,若f(m-1)+f(2m-1)>0,求实数m的取值范围.
分析:根据题意,对f(m-1)+f(2m-1)>0变形可得f(m-1)>-f(2m-1),由奇函数的性质可得f(m-1)>f(1-2m),又由函数的定义域与单调性可得
,解可得答案.
|
解答:解:∵f(m-1)+f(2m-1)>0,
∴f(m-1)>-f(2m-1),
又∵f(x)为奇函数,则-f(2m-1)=f(1-2m),
则有f(m-1)>f(1-2m),
∵f(x)为(-2,2)上的减函数,
∴
,
解可得-
<m<
;
则m的取值范围是-
<m<
.
∴f(m-1)>-f(2m-1),
又∵f(x)为奇函数,则-f(2m-1)=f(1-2m),
则有f(m-1)>f(1-2m),
∵f(x)为(-2,2)上的减函数,
∴
|
解可得-
| 1 |
| 2 |
| 2 |
| 3 |
则m的取值范围是-
| 1 |
| 2 |
| 2 |
| 3 |
点评:本题考查函数奇偶性与单调性的综合应用,解题时需要注意函数的定义域.
练习册系列答案
相关题目