题目内容
6、某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为( )
分析:根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.
解答:解:根据题意,分2种情况讨论,
若只有甲乙其中一人参加,有C21•C63•A44=480种情况;
若甲乙两人都参加,有C22•C52•A44=240种情况,
其中甲乙相邻的有C22•C52•A33•A22=120种情况;
则不同的发言顺序种数480+240-120=600种,
故选C.
若只有甲乙其中一人参加,有C21•C63•A44=480种情况;
若甲乙两人都参加,有C22•C52•A44=240种情况,
其中甲乙相邻的有C22•C52•A33•A22=120种情况;
则不同的发言顺序种数480+240-120=600种,
故选C.
点评:本题考查组合的应用,要灵活运用各种特殊方法,如捆绑法、插空法.
练习册系列答案
相关题目