题目内容
已知数列{an}的前n项和为Sn,a1=1,an=
Sn+1-
(其中n∈N*).
(I)求a2,a3;
(Ⅱ)设bn=
an+1-an,证明数列{bn}是等比数列,并求出其通项;
(Ⅲ)设cn=
,求数列{cn}的前n项和Tn.
| 1 |
| 4 |
| 1 |
| 2 |
(I)求a2,a3;
(Ⅱ)设bn=
| 1 |
| 2 |
(Ⅲ)设cn=
| 22n+1 |
| an•an+1 |
(I)Sn+1=4an+2,当n=1时,a1+a2=4a1+2,a2=5;(1分)
当n=2时,a1+a2+a3=4a2+2,6+a3=22,a3=16;(2分)
(II)由an=
Sn+1-
得,an+1=
Sn+2-
,an+1-an=
an+2
an+1-an=
an+2-
an+1=
(
an+2-an+1),
∴bn=
bn+1,
=2∴数列{bn}是公比为2的等比数列.(4分)
b1=
a2-a1=
,
∴bn=
•2n-1=3•2n-2(5分)
(III)由(II)
3•2n-2=
an+1-an,
=
-
,令dn=
,d1=
=
∴数列{dn}是首项为
,公差为
的等差数列.(7分)
∴dn=
+(n-1)
=
cn=
=
=
(
-
)
∴Tn=
(
-
+
-
+…+
-
)=
(2-
)=
(8分)
当n=2时,a1+a2+a3=4a2+2,6+a3=22,a3=16;(2分)
(II)由an=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| 1 |
| 2 |
| bn+1 |
| bn |
b1=
| 1 |
| 2 |
| 3 |
| 2 |
∴bn=
| 3 |
| 2 |
(III)由(II)
3•2n-2=
| 1 |
| 2 |
| 3 |
| 4 |
| an+1 |
| 2n+1 |
| an |
| 2n |
| an |
| 2n |
| a1 |
| 2 |
| 1 |
| 2 |
∴数列{dn}是首项为
| 1 |
| 2 |
| 3 |
| 4 |
∴dn=
| 1 |
| 2 |
| 3 |
| 4 |
| 3n-1 |
| 4 |
cn=
| 22n+1 |
| an•an+1 |
| 1 |
| dndn+1 |
| 4 |
| 3 |
| 1 |
| dn |
| 1 |
| dn+1 |
∴Tn=
| 4 |
| 3 |
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| d2 |
| 1 |
| d3 |
| 1 |
| dn |
| 1 |
| dn+1 |
| 4 |
| 3 |
| 4 |
| 3n+2 |
| 8n |
| 3n+2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |