题目内容
【题目】已知抛物线
的焦点为F,A为C上异于原点的任意一点,过点A的直线交y轴正半轴于点B,且有
,当点A的纵坐标为6时,
为正三角形.
![]()
(1)求C的方程;
(2)若直线
,且
和C有且只有一个公共点D,证明:直线AD过定点,并求出该定点坐标.
【答案】(1)
;(2)证明见解析,![]()
【解析】
(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的
值;
(2)设出点
的坐标,求出直线
的方程,利用直线
,且
和
有且只有一个公共点
,求出点
的坐标,写出直线
的方程,将方程化为点斜式,可求出定点.
(1)![]()
![]()
可得其焦点为:
,
设
,则FB的中点为
,
![]()
,由抛物线的定义知
,
解得
或
(舍去)
由
,解得
,
C的方程为:
.
(2)由(1)知
.设
,
,
,
,
![]()
,
则
,
由
得
,故
,
可得直线l的斜率
.
设
,
由题知
为C在D处的切线,D点坐标满足:
,
,
由导数的几何意义知
的斜率
,
故
,
,
(此处也可设
的方程,与抛物线方程联立方程组,然后由
得到D点坐标).
![]()
,
故直线AD的方程为:
.
由
,得
,
直线AD过定点
.
【题目】某工厂的
,
,
三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 |
|
|
|
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自
,
,
各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线
的焦点,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
,
,求
的值.
【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.
(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量
(百斤)与使用堆沤肥料
(千克)之间对应数据如下表
使用堆沤肥料 | 2 | 4 | 5 | 6 | 8 |
产量的增加量 | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出
关于
的线性回归方程
;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量
是多少百斤?
(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:
,且
);
前8小时内的销售量(单位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求
的取值范围.
附:回归直线方程为
,其中
.
【题目】某学校为进一步规范校园管理,强化饮食安全,提出了“远离外卖,健康饮食”的口号.当然,也需要学校食堂能提供安全丰富的菜品来满足同学们的需求.在学期末,校学生会为了调研学生对本校食堂A部和B部的用餐满意度,从在A部和B部都用过餐的学生中随机抽取了200人,每人分别对其评分,满分为100分.随后整理评分数据,将分数分成6组:第1组
,第2组
,第3组
,第4组
,第5组
,第6组
,得到A部分数的频率分布直方图和B部分数的频数分布表.
![]()
分数区间 | 频数 |
| 7 |
| 18 |
| 21 |
| 24 |
| 70 |
| 60 |
定义:学生对食堂的“满意度指数”
分数 |
|
|
|
|
|
|
满意度指数 | 0 | 1 | 2 | 3 | 4 | 5 |
(1)求A部得分的中位数(精确到小数点后一位);
(2)A部为进一步改善经营,从打分在80分以下的前四组中,采用分层抽样的方法抽取8人进行座谈,再从这8人中随机抽取3人参与“端午节包粽子”实践活动,在第3组抽到1人的情况下,第4组抽到2人的概率;
(3)如果根据调研结果评选学生放心餐厅,应该评选A部还是B部(将频率视为概率)