题目内容
已知数列{an}满足:a1=1,an+1=(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;
(Ⅲ)在(Ⅱ)条件下,求数列{an}前100项中的所有偶数项的和S.
解:(Ⅰ)a2=
,a3=
,a4=
,a5=
(Ⅱ)![]()
=![]()
=![]()
b1=a2-2=![]()
∴数列{bn}是等比数列,且
bn=(
)×(
)n-l=-(
)n
(Ⅲ)由(Ⅱ)得:a2n=bn+2=2-(
)n(n=1,2,3,…50)
S=a2+a4+…+a100=2×50-![]()
=100-1+
=99+![]()
练习册系列答案
相关题目