题目内容
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
(1)求a,b的值;
(2)若过F的直线交椭圆于A,B两点,且
| OA |
| OB |
| m |
| 2 |
| OA |
| OB |
分析:(1)由题意知
=
,
-c=1,由此可求出a,b的值.
(2)设直线AB:y=k(x-1),A(x1,y1),B(x2,y2),则
消去y,得(1+2k2)x2-4k2x+2(k2-1)=0,然后结合题意利用根与系数和关系进行求解.
| c |
| a |
| ||
| 2 |
| a2 |
| c |
(2)设直线AB:y=k(x-1),A(x1,y1),B(x2,y2),则
|
解答:解:(1)由题意知
=
,
-c=1,解得a=
,c=1,从而b=1.
(2)由(1)知F(1,0),显然直线不垂直于x轴,可设直线AB:y=k(x-1),
A(x1,y1),B(x2,y2),则
消去y,得(1+2k2)x2-4k2x+2(k2-1)=0,
则x1+x2=
,x1x2=
,y1+y2=k(x1-1)+k(x2-1)=
,
于是
+
=(
,-
),
依题意:
=
,故k=
,或k=0(舍)
又y1y2=k(x1-1)k(x2-1)=-
,故
•
=x1x2+y1y2=0,
所以
与
的夹角为90°.
| c |
| a |
| ||
| 2 |
| a2 |
| c |
| 2 |
(2)由(1)知F(1,0),显然直线不垂直于x轴,可设直线AB:y=k(x-1),
A(x1,y1),B(x2,y2),则
|
则x1+x2=
| 4k2 |
| 1+2k2 |
| 2(k2-1) |
| 1+2k2 |
| -2k |
| 1+2k2 |
于是
| OA |
| OB |
| 4k2 |
| 1+2k2 |
| 2k |
| 1+2k2 |
依题意:
| ||
| 4 |
| ||
-
|
| 2 |
又y1y2=k(x1-1)k(x2-1)=-
| k2 |
| 1+2k2 |
| OA |
| OB |
所以
| OA |
| OB |
点评:本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,解题时要认真审题,仔细解答,避免出错.
练习册系列答案
相关题目