题目内容
17.若f′(x0)=1,则$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$.分析 根据函数f(x)在x=x0处导数定义推得:$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$f'(x0).
解答 解:根据函数f(x)在x=x0处导数定义,
f'(x0)=$\underset{lim}{k→0}$$\frac{f({x}_{0})-f({x}_{0}-k)}{k}$
=(-2)•$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$
所以,$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$f'(x0),
因为,f'(x0)=1,
所以,原式=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.
点评 本题主要考查了函数在某一点处导数的定义,合理进行恒等变形是解决本题的关键,属于基础题.
练习册系列答案
相关题目
12.在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,现把矩形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的正弦值为( )
| A. | $\frac{\sqrt{21}}{5}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{\sqrt{30}}{10}$ | D. | $\frac{\sqrt{70}}{10}$ |
9.设P和Q是两个集合,定义集合P+Q={x|x∈P}或x∈Q且x∉P∩Q.若P={x|x2-5x-6≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于( )
| A. | [-1,6] | B. | (-∞,-1]∪[6,+∞) | C. | (-3,5) | D. | (-∞,-3)∪[-1,5]∪(6,+∞) |