题目内容

17.若f′(x0)=1,则$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$.

分析 根据函数f(x)在x=x0处导数定义推得:$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$f'(x0).

解答 解:根据函数f(x)在x=x0处导数定义,
f'(x0)=$\underset{lim}{k→0}$$\frac{f({x}_{0})-f({x}_{0}-k)}{k}$
=(-2)•$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$
所以,$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$f'(x0),
因为,f'(x0)=1,
所以,原式=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题主要考查了函数在某一点处导数的定义,合理进行恒等变形是解决本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网