题目内容
已知数列{an}满足a1=a(a>2),an+1=
,n∈N*.
(1)求证:an+1<an;
(2)若a=
,且数列{bn}满足an=bn+
,bn>1,求证:数列{lgbn}是等比数列,并求数列{an}的通项式;
(3)若a=2011,求证:当n≥12时,2<an<2+
恒成立.(参考数据210=1024)
| 2+an |
(1)求证:an+1<an;
(2)若a=
| 3 |
| 2 |
| 2 |
| 1 |
| bn |
(3)若a=2011,求证:当n≥12时,2<an<2+
| 1 |
| 2011 |
(1)an+1-an=
-
=
(n≥2),
上式表明an+1-an与an-an-1同号,
∴an+1-an,an-an-1,an-1-an-2,…,a2-a1同号,
∵a>2,
∴a2-a-2=(a-2)(a+1)>0,
∴a2>a+2,
∴a2=
<a,a2-a1<0.
∴an+1-an<0,
故an+1<an.
(2)∵an+1=bn+1+
=
=
,
bn+12+
=bn+
,
bn+14-(bn+
)bn+1 2+1=0,
注意到bn>1,
f(x)=x+
(x>0),f′(x)=1-
>0,
∴f(x)在x>1时为增函数,而f(bn+12)=f(bn),
∴bn+12=bn,
∴2lgbn+1=lgbn,
∴
=
,
∴数列{lgbn}是等比数列,
当a1=b1+
=
,b1=
,lgb1=lg
,
lgbn=(
)n-1•lg
=(
)n•lg2,
∴bn=2(
)n,
an=bn+
=2(
)n+2-(
)n.
(3)∵当n≥2时,an-2=
-2=
,
上式表明:an-2与an-1-2同号,对一切n≥2成立,
∴an-2,an-1-2,…,a2-2,a1-2同号,
而a1-2>0,
∴an-2>0,an-1-2>0,
∵n≥2时,an-2=
<
=
,
∴
<
,
∴
•
…
•
=
<(
)n-1,
∴0<an-2<(a1-2)•(
)n-1,
当a1=2011,n=12时,
a12-2=(2011-2)×(
)12-1=
<
=
<
,
∴a12<2+
,
∵an>an+1,
∴当n≥12时,2<an<2+
恒成立.
| 2+an |
| 2+an-1 |
=
| an-an-1 | ||||
|
上式表明an+1-an与an-an-1同号,
∴an+1-an,an-an-1,an-1-an-2,…,a2-a1同号,
∵a>2,
∴a2-a-2=(a-2)(a+1)>0,
∴a2>a+2,
∴a2=
| a+2 |
∴an+1-an<0,
故an+1<an.
(2)∵an+1=bn+1+
| 1 |
| bn+1 |
=
| 2+an |
=
2+bn+
|
bn+12+
| 1 |
| bn+1 2 |
| 1 |
| bn |
bn+14-(bn+
| 1 |
| bn |
注意到bn>1,
f(x)=x+
| 1 |
| x |
| 1 |
| x2 |
∴f(x)在x>1时为增函数,而f(bn+12)=f(bn),
∴bn+12=bn,
∴2lgbn+1=lgbn,
∴
| lgbn+1 |
| lgbn |
| 1 |
| 2 |
∴数列{lgbn}是等比数列,
当a1=b1+
| 1 |
| b1 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
lgbn=(
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
∴bn=2(
| 1 |
| 2 |
an=bn+
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
(3)∵当n≥2时,an-2=
| 2+an-1 |
| an-1-2 | ||
|
上式表明:an-2与an-1-2同号,对一切n≥2成立,
∴an-2,an-1-2,…,a2-2,a1-2同号,
而a1-2>0,
∴an-2>0,an-1-2>0,
∵n≥2时,an-2=
| an-1-2 | ||
|
| an-1-2 | ||
|
| an-1-2 |
| 4 |
∴
| an-2 |
| an-1-2 |
| 1 |
| 4 |
∴
| an-2 |
| an-1-2 |
| an-1-2 |
| an-2-2 |
| a3-2 |
| a2-2 |
| a2-2 |
| a1-2 |
=
| an-2 |
| a1-2 |
| 1 |
| 4 |
∴0<an-2<(a1-2)•(
| 1 |
| 4 |
当a1=2011,n=12时,
a12-2=(2011-2)×(
| 1 |
| 4 |
| 2009 |
| 222 |
| 211 |
| 222 |
| 1 |
| 2 11 |
| 1 |
| 2011 |
∴a12<2+
| 1 |
| 2011 |
∵an>an+1,
∴当n≥12时,2<an<2+
| 1 |
| 2011 |
练习册系列答案
相关题目