题目内容
设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1.(1)求数列{an}的通项公式.(2)设bn=
| 2n |
| (an+1)(an+1+1) |
| 1 |
| 3 |
分析:(1)利用递推关系an=sn-sn-1(n≥2),a1=s1,可求通项an
(2)结合(1)可得bn=
=2(
-
),然后利用裂项求和求Tn即可证明.
(2)结合(1)可得bn=
| 2n |
| (2n-1+1)(2n+1) |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
解答:解:(1)∵an+1-Sn-1=0①∴n≥2时,an-Sn-1-1=0②
①-②得:((an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
=2(n≥2)
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1
(2)∵bk=
=
=2(
-
)
∴Tn=b1+b2+…+bn=
+
+
++
=2[(
-
)+(
-
)+(
-
)++(
-
)]=2(
-
)
∵0<
≤
,∴
≤2(
-
)<1,
所以
≤Tn<1
①-②得:((an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
| an+1 |
| an |
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1
(2)∵bk=
| 2k |
| (ak+1)(ak+1+1) |
| 2k |
| (2k-1+1)(2k+1) |
| 1 |
| 2k-1+1 |
| 1 |
| 2k+1 |
∴Tn=b1+b2+…+bn=
| 2 |
| (a1+1)(a2+1) |
| 22 |
| (a2+1)(a3+1) |
| 23 |
| (a3+1)(a4+1) |
| 2n |
| (an+1)(an+1+1) |
| 1 |
| 20+1 |
| 1 |
| 2+1 |
| 1 |
| 2+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
∵0<
| 1 |
| 2n+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
所以
| 1 |
| 3 |
点评:本题主要考查了利用结论:sn=a1+a2+…+an,sn-1=a1+a+…+an-1(n≥2)是求解本题的关键,是进行数列“项”与“和”之间的转化常用的公式,但要注意对n=1的检验.
练习册系列答案
相关题目