ÌâÄ¿ÄÚÈÝ
ÒÑÖªn´ÎÏîʽPn(x)=a0xn+a1xn-1+¡+an-1x+an.Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0 k(k=2,3,4,¡,n)µÄÖµÐèÒªk£1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãP10£¨x 0£©µÄÖµ¹²ÐèÒª_______´ÎÔËËã.ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP 0£¨x£©=a 0£¬P k+1£¨x£©=xP k£¨x£©+a k+1£¨k=0£¬1£¬2£¬¡£¬n£1£©.ÀûÓøÃËã·¨£¬¼ÆËãP 3£¨x 0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãP10£¨x 0£©µÄÖµ¹²ÐèÒª________´ÎÔËËã.
½âÎö:ÓÉÌâÒâÖªµÀx0 kµÄÖµÐèÒªk-1´ÎÔËËã,¼´½øÐÐk-1´Îx0µÄ³Ë·¨ÔËËã¿ÉµÃµ½x0 kµÄ½á¹û¶ÔÓÚP3(x0)=a0x03+a1x02+a2x0+a3ÕâÀïa0x03=a0¡Áx0¡Áx0¡Áx0½øÐÐÁË3´ÎÔËËã,a1x02=a1¡Áx0¡Áx0½øÐÐÁË2´ÎÔËËã,a2x0½øÐÐ1´ÎÔËËã,×îºóa0x03,a1x02,a2x0,a3Ö®¼äµÄ¼Ó·¨ÔËËã½øÐÐÁË3´ÎÕâÑùP3(x0)×ܹ²½øÐÐÁË3+2+1+3=9´ÎÔËËã.
¶ÔÓÚPn(x0)=a0x0n+a1x0 n-1+¡+an×ܹ²½øÐÐÁËn+n-1+n-2+¡+1=
´Î.
³Ë·¨ÔËËã¼°n´Î¼Ó·¨ÔËËã×ܹ²½øÐÐÁË
+n=
´Î.
ÓɸĽøËã·¨¿ÉÖª£º
Pn(x0)=x0Pn-1(x0)+an,P n-1(x0)=x0P n-2(x0)+a n-1,¡,P1(x0)=P0(x0)+a1,P0(x0)=a0.
ÔËËã´ÎÊý´ÓºóÍùǰËãºÍΪ£º2+2+¡+2=2n´Î.
´ð°¸:
n(n+3) 2n
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿