题目内容

已知向量∵=(x+z,3),=(2,y-z),且,若x,y满足不等式|x|+|y|≤1,则z的取值范围为( )
A.[-2,2]
B.[-2,3]
C.[-3,2]
D.[-3,3]
【答案】分析:根据平面向量的垂直的坐标运算法则,我们易根据已知中的=(x+z,3),=(2,y-z),,构造出一个关于x,y,z的方程,即关于Z的目标函数,画了约束条件|x|+|y|≤1对应的平面区域,并求出各个角点的坐标,代入即可求出目标函数的最值,进而给出z的取值范围.
解答:解:∵=(x+z,3),=(2,y-z),
又∵
∴(x+z)×2+3×(y-z)=2x+3y-z=0,
即z=2x+3y
∵满足不等式|x|+|y|≤1的平面区域如下图所示:
由图可知当x=0,y=1时,z取最大值3,
当x=0,y=-1时,z取最小值-3,
故z的取值范围为[-3,3]
故选D
点评:本题考查的知识点是数量积判断两个平面向量的垂直关系,简单线性规划的应用,其中利用平面向量的垂直的坐标运算法则,求出目标函数的解析式是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网