题目内容
已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )
| A.1 | B.0 | C.-1 | D.2 |
函数f(x)=-x2+4x+a=-(x-2)2+a+4
∵x∈[0,1],
∴函数f(x)=-x2+4x+a在[0,1]上单调增
∴当x=0时,f(x)有最小值f(0)=a=-2
当x=1时,f(x)有最大值f(1)=3+a=3-2=1
故选A.
∵x∈[0,1],
∴函数f(x)=-x2+4x+a在[0,1]上单调增
∴当x=0时,f(x)有最小值f(0)=a=-2
当x=1时,f(x)有最大值f(1)=3+a=3-2=1
故选A.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|