题目内容

若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是(  )
A.1<a<2B.1<a<4C.2<a<4D.a>4或a<1
对于函数y=x3-3ax+a,求导可得y′=3x2-3a,
∵函数y=x3-3ax+a在(1,2)内有极小值,
∴y′=3x2-3a=0,则其有一根在(1,2)内,
a>0时,3x2-3a=0两根为±
a

若有一根在(1,2)内,则1<
a
<2,
即1<a<4,
a=0时,3x2-3a=0两根相等,均为0,f(x)在(1,2)内无极小值,
a<0时,3x2-3a=0无根,f(x)在(1,2)内无极小值,
综合可得,1<a<4,
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网