题目内容
已知数列{an}中a2=2且前n项和Sn=| n(an+3a1) |
| 2 |
(Ⅰ)求数列{an}中首项的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若Tn=
| 16 |
| an+1an+3 |
分析:(Ⅰ)由Sn=
,n∈N*,a2=2,能够导出数列{an}中首项的值.
(Ⅱ)由Sn=
,知2Sn=nan,2Sn-1=(n-1)an-1,由此能导出
=
=
=…=
=
,从而得到an=2(n-1),n∈N*.
(Ⅲ)由tn=
=
-
,知Tn=(
-
) +(
-
) +…+(
-
)=3-
-
.
| n(an+3a1) |
| 2 |
(Ⅱ)由Sn=
| nan |
| 2 |
| an |
| n-1 |
| an-1 |
| n-2 |
| an-2 |
| n-3 |
| a3 |
| 2 |
| a2 |
| 1 |
(Ⅲ)由tn=
| 16 |
| an+1an+3 |
| 2 |
| n |
| 2 |
| n+2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| n |
| 2 |
| n+2 |
| 2 |
| n+1 |
| 2 |
| n+2 |
解答:解:(Ⅰ)∵Sn=
,n∈N*,a2=2,
∴S1=
,∴a1=0.
(Ⅱ)由(Ⅰ)可知,Sn=
,
∴2Sn=nan,
2Sn-1=(n-1)an-1,
两式相减,2(Sn-Sn-1)=nan-(n-1)an-1,
∴2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1,
∴
=
,n≥3,n∈N*,
∴
=
=
=…=
=
,
∴an=2(n-1),n≥2.
经检验,n=1也成立,∴an=2(n-1),n∈N*.
(Ⅲ)由(Ⅱ)知,tn=
=
-
,
∴Tn=(
-
) +(
-
) +…+(
-
)=3-
-
.
| n(an+3a1) |
| 2 |
∴S1=
| a1+3a1 |
| 2 |
(Ⅱ)由(Ⅰ)可知,Sn=
| nan |
| 2 |
∴2Sn=nan,
2Sn-1=(n-1)an-1,
两式相减,2(Sn-Sn-1)=nan-(n-1)an-1,
∴2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1,
∴
| an |
| n-1 |
| an-1 |
| n-2 |
∴
| an |
| n-1 |
| an-1 |
| n-2 |
| an-2 |
| n-3 |
| a3 |
| 2 |
| a2 |
| 1 |
∴an=2(n-1),n≥2.
经检验,n=1也成立,∴an=2(n-1),n∈N*.
(Ⅲ)由(Ⅱ)知,tn=
| 16 |
| an+1an+3 |
| 2 |
| n |
| 2 |
| n+2 |
∴Tn=(
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| n |
| 2 |
| n+2 |
| 2 |
| n+1 |
| 2 |
| n+2 |
点评:本题考查数列中首项的求法和求解通项公式的方法,培养学生等差数列和等比数列综合题的解决方法.
练习册系列答案
相关题目