题目内容

已知数列{an}中a2=2且前n项和Sn=
n(an+3a1)
2
(n∈N*),
(Ⅰ)求数列{an}中首项的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若Tn=
16
an+1an+3
,数列{tn}的前n项和为Tn,求Tn
分析:(Ⅰ)由Sn=
n(an+3a1
2
,n∈N*
,a2=2,能够导出数列{an}中首项的值.
(Ⅱ)由Sn=
nan
2
,知2Sn=nan,2Sn-1=(n-1)an-1,由此能导出
an
n-1
=
an-1
n-2
=
an-2
n-3
=…=
a3
2
=
a2
1
,从而得到an=2(n-1),n∈N*
(Ⅲ)由tn=
16
an+1an+3
=
2
n
-
2
n+2
,知Tn=(
2
1
-
2
3
)  +(
2
2
-
2
4
)  +…+(
2
n
-
2
n+2
)
=3-
2
n+1
-
2
n+2
解答:解:(Ⅰ)∵Sn=
n(an+3a1
2
,n∈N*
,a2=2,
S1=
a1+3a1
2
,∴a1=0.
(Ⅱ)由(Ⅰ)可知,Sn=
nan
2

∴2Sn=nan
2Sn-1=(n-1)an-1
两式相减,2(Sn-Sn-1)=nan-(n-1)an-1
∴2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1
an
n-1
=
an-1
n-2
,n≥3,n∈N*
an
n-1
=
an-1
n-2
=
an-2
n-3
=…=
a3
2
=
a2
1

∴an=2(n-1),n≥2.
经检验,n=1也成立,∴an=2(n-1),n∈N*
(Ⅲ)由(Ⅱ)知,tn=
16
an+1an+3
=
2
n
-
2
n+2

Tn=(
2
1
-
2
3
)  +(
2
2
-
2
4
)  +…+(
2
n
-
2
n+2
)
=3-
2
n+1
-
2
n+2
点评:本题考查数列中首项的求法和求解通项公式的方法,培养学生等差数列和等比数列综合题的解决方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网