题目内容
已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,
,bn+1成等比数列.
( I)求数列{bn}的通项公式;
(Ⅱ)设Sn=
+
+…
,试比较2Sn与2-
的大小.
| an |
( I)求数列{bn}的通项公式;
(Ⅱ)设Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| ||
| an+1 |
分析:(I)利用正项数列{an},{bn}满足对任意正整数n,都有bn,
,bn+1成等比数列,可得an=bnbn+1,结合{bn}是等差数列,可求数列的公差,从而可求数列{bn}的通项公式;
(Ⅱ)确定数列{an}的通项,利用裂项法求和,再作出比较,可得结论.
| an |
(Ⅱ)确定数列{an}的通项,利用裂项法求和,再作出比较,可得结论.
解答:解:(I)∵正项数列{an},{bn}满足对任意正整数n,都有bn,
,bn+1成等比数列,
∴an=bnbn+1,
∵a1=3,a2=6,∴b1b2=3,b2b3=6
∵{bn}是等差数列,∴b1+b3=2b2,∴b1=
,b2=
∴bn=
(n+1);
(Ⅱ)an=bnbn+1=
,则
=2(
-
)
∴Sn=2[(
-
)+(
-
)+…+(
-
)]=1-
∴2Sn=2-
∵2-
=2-
∴2Sn-(2-
)=
∴当n=1,2时,2Sn<2-
;当n≥3时,2Sn>2-
.
| an |
∴an=bnbn+1,
∵a1=3,a2=6,∴b1b2=3,b2b3=6
∵{bn}是等差数列,∴b1+b3=2b2,∴b1=
| 2 |
3
| ||
| 2 |
∴bn=
| ||
| 2 |
(Ⅱ)an=bnbn+1=
| (n+1)(n+2) |
| 2 |
| 1 |
| an |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=2[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2 |
| n+2 |
∴2Sn=2-
| 4 |
| n+2 |
∵2-
| ||
| an+1 |
| n+2 |
| n+3 |
∴2Sn-(2-
| ||
| an+1 |
| n2-8 |
| (n+2)(n+3) |
∴当n=1,2时,2Sn<2-
| ||
| an+1 |
| ||
| an+1 |
点评:本题考查数列的通项与求和,考查大小比较,考查学生的计算能力,确定数列的通项是关键.
练习册系列答案
相关题目