题目内容
(本小题满分12分)已知函数
满足
.
(Ⅰ)求
的解析式及其定义域;
(Ⅱ)写出
的单调区间并证明.
(Ⅰ)求
(Ⅱ)写出
(Ⅰ)
(Ⅱ)函数
在区间
单调递减,用函数单调性的定义证明即可.
(Ⅱ)函数
试题分析:(Ⅰ)令
则
∴
∴
(Ⅱ)函数
设
当
同理,当
∴函数
点评:换元法求函数的解析式时,要注意换元前后自变量的取值范围是否发生了变化;利用定义证明函数的单调性时,要严格按照取值——作差——变形——判号——结论几个步骤进行,变形要变的彻底.
练习册系列答案
相关题目