题目内容

已知函数 f(x)=log3(3x-1),
(1)求函数f(x)的定义域;
(2)求证函数f(x)在(0,+∞)内单调递增.
(3)若f-1(x)是函数f(x)的反函数,设F(x)=f-1(2x)-f(x),求函数F(x)的最小值及对应的x值.
(1)函数 f(x)=log3(3x-1),得:3x-1>0,∴x>0
∴f(x)的定义域 是(0,+∞).
(2)设在(0,+∞)上任取x1<x2,则f(x2)-f(x1)=log3
3x2-1
3x1-1

由y=3x在定义域(0,+∞)内单调递增得:
3x2-1
3x1-1
> 1
,∴log3
3x2-1
3x1-1
>0
,∴f(x2)-f(x1)>0
∴函数f(x)在(0,+∞)内单调递增(3分)
(3)由 f(x)=log3(3x-1),得:f-1(x)=log3(3x+1),∴F(x)=f-1(2x)-f(x)=log3
32x+1
3x-1

log3(3x-1+
2
3x-1
+2)
≥log3(2
2
 +2)

当x=log3(
2
+1)
时,F(x)最小值为log3(2
2
+2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网