题目内容

已知向量m=(cosθ,sinθ)和n=(-sinθ,cosθ),θ∈[π,2π].

(1)求|m+n|的最大值;

(2)当|m+n|=时,求cos()的值.

  (1)|m+n|max=2(2)cos(


解析:

(1)m+n=(cosθ-sinθ+,cosθ+sinθ),

|m+n|=

=

=

=2

∵θ∈[π,2π],∴,∴cos(θ+)≤1,|m+n|max=2.

(2)由已知|m+n|=,得cos(θ+)=.

又cos(θ+)=2cos2()-1,∴cos2()=,

∵θ∈[π,2π],∴,∴cos(.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网