ÌâÄ¿ÄÚÈÝ

7£®É躯Êýf£¨x£©ÔÚÆä¶¨ÒåÓòDÉϵĵ¼º¯ÊýΪf¡ä£¨x£©£¬Èç¹û´æÔÚʵÊýaºÍº¯Êýh£¨x£©£¬ÆäÖÐh£¨x£©¶ÔÈÎÒâµÄx¡ÊD£¬¶¼ÓÐh£¨x£©£¾0£¬Ê¹µÃf¡ä£¨x£©=h£¨x£©£¨x2-ax+1£©£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖʦأ¨a£©£¬¸ø³öÏÂÁÐËĸöº¯Êý£º
¢Ùf£¨x£©=$\frac{1}{3}$x3-x2+x+1£»       ¢Úf£¨x£©=lnx+$\frac{4}{x+1}$£»
¢Ûf£¨x£©=£¨x2-4x+5£©ex£»     ¢Üf£¨x£©=$\frac{{x}^{2}+x}{2x+1}$
ÆäÖоßÓÐÐÔÖʦأ¨2£©µÄº¯ÊýΪ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Ú¢ÜC£®¢Ú¢Û¢ÜD£®¢Ù¢Û¢Ü

·ÖÎö ÒòΪa=2£¬ËùÒÔÏÈÇó³öº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©£¬È»ºó½«ÆäÅä´Õ³Éf¡ä£¨x£©=h£¨x£©£¨x2-2x+1£©ÕâÖÖÐÎʽ£¬·Ö±ðÇó³öh£¨x£©£¬È»ºóÈ·¶¨h£¨x£©ÊÇ·ñÂú×ã¶ÔÈÎÒâµÄx¡ÊD¶¼ÓÐh£¨x£©£¾0£®

½â´ð ½â£º¢Ùf'£¨x£©=x2-2x+1£¬Èôf¡ä£¨x£©=h£¨x£©£¨x2-2x+1£©£¬¼´x2-2x+1=h£¨x£©£¨x2-2x+1£©£¬
ËùÒÔh£¨x£©=1£¾0£¬Âú×ãÌõ¼þ£¬ËùÒÔ¢Ù¾ßÓÐÐÔÖʦأ¨2£©£®
¢Úº¯Êýf£¨x£©=lnx++$\frac{4}{x+1}$µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£®f¡ä£¨x£©=$\frac{1}{x}$-$\frac{4}{{£¨x+1£©}^{2}}$=$\frac{{£¨x+1£©}^{2}-4x}{x{•£¨x+1£©}^{2}}$=$\frac{1}{x{•£¨x+1£©}^{2}}$•£¨x2-2x+1£©£¬
ËùÒÔh£¨x£©=$\frac{1}{x{•£¨x+1£©}^{2}}$£¬µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬h£¨x£©£¾0£¬ËùÒÔ¢Ú¾ßÓÐÐÔÖʦأ¨2£©£®
¢Ûf'£¨x£©=£¨2x-4£©ex+£¨x2-4x+5£©ex=£¨x2-2x+1£©ex£¬ËùÒÔh£¨x£©=ex£¬ÒòΪh£¨x£©£¾0£¬ËùÒÔ¢Û¾ßÓÐÐÔÖʦأ¨2£©£®
¢Üf¡ä£¨x£©=$\frac{£¨2x+1£©£¨2x+1£©-2{£¨x}^{2}+1£©}{{£¨2x+1£©}^{2}}$=$\frac{{2x}^{2}+2x+1}{{£¨2x+1£©}^{2}}$£¬Èôf¡ä£¨x£©=$\frac{{2x}^{2}+2x+1}{{£¨2x+1£©}^{2}•{£¨x}^{2}-2x+1£©}$•£¨x2-2x+1£©£¬
Ôòh£¨x£©=$\frac{{2x}^{2}+2x+1}{{£¨2x+1£©}^{2}•{£¨x}^{2}-2x+1£©}$£¬ÒòΪh£¨1£©²»´æÔÚ£¬ËùÒÔ²»Âú×ã¶ÔÈÎÒâµÄx¡ÊD¶¼ÓÐh£¨x£©£¾0£¬ËùÒԢܲ»¾ßÓÐÐÔÖʦأ¨2£©£¬
¹ÊÑ¡£ºA£®

µãÆÀ ±¾ÌâµÄ¿¼µãÊǵ¼ÊýµÄÔËËãÒÔ¼°Í¨¹ýÌõ¼þÇóh£¨x£©£¬±¾ÌâµÄ¹Ø¼üÊÇͨ¹ý¹ØÏµÊ½È·¶¨º¯Êýh£¨x£©µÄ±í´ïʽ£¬È»ºóÅжÏÌõ¼þÊÇ·ñ³ÉÁ¢£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø