题目内容

已知直角梯形ABCD中,ABCD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)求证:FG面BCD.

精英家教网
证明:(1)由已知得:DE⊥AE,DE⊥EC,
∴DE⊥面ABCE∴DE⊥BC,又BC⊥CE,∴BC⊥面DCE;
(2)取AB中点H,连接GH,FH,
∴GHBD,FHBC,
∴GH面BCD,FH面BCD
∴面FHG面BCD,
∴GF面BCD
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网