题目内容
设函数f(x)=lg,其中a∈R,m是给定的正整数,且m≥2.如果不等式f(x)>(x-1)lgm在区间[1,+∞)上有解,则实数a的取值范围是_________.
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(Ⅰ)函数f(x)=是否属于集合M?说明理由;
(Ⅱ)设函数f(x)=lg∈M,求a的取值范围;
(Ⅲ)设函数y=2x图象与函数y=-x的图象有交点,若函数f(x)=2x+x2.
证明:函数f(x)∈M
已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=是否属于集合M?说明理由;
(2)设函数f(x)=lg,求实数a的取值范围;
(3)证明:函数f(x)=2x+x2∈M.
设函数f(x)=lg(ax2+2x+1).
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为R,求实数a的取值范围.
(1)若f(x)的定义域是R,求实数a的取值范围;
(2)若f(x)的值域是R,求实数a的取值范围.