题目内容
已知数列{an}的前n项和为Sn,点(1)求数列{an},{bn}的通项公式;
(2)设
【答案】分析:(1)利用点
在直线
上,可得Sn=
,再写一式,两式相减,即可求得数列{an}的通项公式;确定数列{bn}是等差数列,利用其前9项和为153,b3=11,可求},{bn}的通项公式;
(2)确定数列的通项,利用裂项法即可求和.
解答:解:(1)∵点
在直线
上,
∴
∴Sn=
∴n≥2时,an=Sn-Sn-1=n+5,
n=1时,a1=6也符合
∴an=n+5;
∵bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn,
∴数列{bn}是等差数列
∵其前9项和为153.
∴b5=17
∵b3=11,∴公差d=
=3
∴bn=b3+3(n-3)=3n+2;
(2)
=
(
)
∴Tn=
(1-
+
-
+…+
)=
=
.
点评:本题考查数列的通项与求和,考查裂项法的运用,确定数列的通项是关键.
(2)确定数列的通项,利用裂项法即可求和.
解答:解:(1)∵点
∴
∴Sn=
∴n≥2时,an=Sn-Sn-1=n+5,
n=1时,a1=6也符合
∴an=n+5;
∵bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn,
∴数列{bn}是等差数列
∵其前9项和为153.
∴b5=17
∵b3=11,∴公差d=
∴bn=b3+3(n-3)=3n+2;
(2)
∴Tn=
点评:本题考查数列的通项与求和,考查裂项法的运用,确定数列的通项是关键.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |