ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ex£¨x3-6x2+3x+a£©£¬
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐÈý¸ö¼«Öµµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©¶¨Ò壺Èç¹ûÇúÏßCÉÏ´æÔÚ²»Í¬µãµÄÁ½µãA£¨x1£¬y1 £©£¬B£¨x2£¬y2 £©£¬¹ýABµÄÖеãÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß½»ÇúÏßCÓÚµãM£¬Ê¹µÃÖ±ÏßABÓëÇúÏßCÔÚM´¦µÄÇÐÏ߯½ÐУ¬Ôò³ÆÇúÏßCÓС°Æ½ºâÇÐÏß¡±£®
ÊÔÅжϺ¯ÊýG£¨x£©=[f'£¨x£©-f£¨x£©]•e-x+exµÄͼÏóÊÇ·ñÓС°Æ½ºâÇÐÏß¡±£¬ÎªÊ²Ã´£¿
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐÈý¸ö¼«Öµµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©¶¨Ò壺Èç¹ûÇúÏßCÉÏ´æÔÚ²»Í¬µãµÄÁ½µãA£¨x1£¬y1 £©£¬B£¨x2£¬y2 £©£¬¹ýABµÄÖеãÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß½»ÇúÏßCÓÚµãM£¬Ê¹µÃÖ±ÏßABÓëÇúÏßCÔÚM´¦µÄÇÐÏ߯½ÐУ¬Ôò³ÆÇúÏßCÓС°Æ½ºâÇÐÏß¡±£®
ÊÔÅжϺ¯ÊýG£¨x£©=[f'£¨x£©-f£¨x£©]•e-x+exµÄͼÏóÊÇ·ñÓС°Æ½ºâÇÐÏß¡±£¬ÎªÊ²Ã´£¿
·ÖÎö£ºÏȶԺ¯ÊýÇóµ¼Êýf'£¨x£©=ex£¨x3-3x2-9x+a+3£©£¬
£¨¢ñ£©µ±a=1ʱ£¬f'£¨0£©¼°f£¨0£©¾ù¿ÉÇ󣬽ø¶ø¿ÉµÃº¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©ÓÉÓÚf£¨x£©ÓÐÈý¸ö¼«Öµµã?f'£¨x£©=ex£¨x3-3x2-9x+a+3£©ÓÐÈý¸öÁãµã?g£¨x£©=x3-3x2-9x+a+3ÓÐÈý¸öÁãµã£¬
¼´ÒªÇóg£¨x£©µÄ¼«´óֵΪÕý£¬ÇÒ¼«Ð¡ÖµÎª¸º£¬Ôò¿ÉÇó³öʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©ÏÈÅж¨º¯ÊýG£¨x£©µÄ½âÎöʽ£¬ÔÙÇó³öÇúÏßÔÚµãM´¦µÄÇÐÏßбÂʼ°Ö±ÏßABµÄбÂÊ£¬ÕûÀíºó¹¹½¨Ðº¯Êý£¬
½èÖúÓÚк¯ÊýµÄµ¥µ÷ÐÔÀ´ÅжϺ¯ÊýG£¨x£©=[f'£¨x£©-f£¨x£©]•e-x+exµÄͼÏóÊÇ·ñÓС°Æ½ºâÇÐÏß¡±£®
£¨¢ñ£©µ±a=1ʱ£¬f'£¨0£©¼°f£¨0£©¾ù¿ÉÇ󣬽ø¶ø¿ÉµÃº¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©ÓÉÓÚf£¨x£©ÓÐÈý¸ö¼«Öµµã?f'£¨x£©=ex£¨x3-3x2-9x+a+3£©ÓÐÈý¸öÁãµã?g£¨x£©=x3-3x2-9x+a+3ÓÐÈý¸öÁãµã£¬
¼´ÒªÇóg£¨x£©µÄ¼«´óֵΪÕý£¬ÇÒ¼«Ð¡ÖµÎª¸º£¬Ôò¿ÉÇó³öʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©ÏÈÅж¨º¯ÊýG£¨x£©µÄ½âÎöʽ£¬ÔÙÇó³öÇúÏßÔÚµãM´¦µÄÇÐÏßбÂʼ°Ö±ÏßABµÄбÂÊ£¬ÕûÀíºó¹¹½¨Ðº¯Êý£¬
½èÖúÓÚк¯ÊýµÄµ¥µ÷ÐÔÀ´ÅжϺ¯ÊýG£¨x£©=[f'£¨x£©-f£¨x£©]•e-x+exµÄͼÏóÊÇ·ñÓС°Æ½ºâÇÐÏß¡±£®
½â´ð£º½â£ºf'£¨x£©=ex£¨x3-3x2-9x+a+3£©
£¨¢ñ£©µ±a=1ʱf'£¨0£©=4£¬f£¨0£©=1
º¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪy=4x+1
£¨¢ò£© f'£¨x£©=ex£¨x3-3x2-9x+a+3£©
Éèg£¨x£©=x3-3x2-9x+a+3£¬Ôòg'£¨x£©=3x2-6x-9=3£¨x-3£©£¨x+1£©
¡àg£¨x£©µÄ¼«´óֵΪg£¨-1£©=a+8£¬¼«Ð¡ÖµÎªg£¨3£©=a-24£¬
ÓÉÓÚf£¨x£©ÓÐÈý¸ö¼«Öµµã?f'£¨x£©ÓÐÈý¸öÁãµã?g£¨x£©ÓÐÈý¸öÁãµã
¡àg£¨x£©µÄ¼«´óֵΪÕý£¬ÇÒ¼«Ð¡ÖµÎª¸º£¬¼´ a+8£¾0£¬a-24£¼0
¿ÉµÃ-8£¼a£¼24
£¨¢ó£©ÓÉÌâÒâÖª£¬G£¨x£©=[f'£¨x£©-f£¨x£©]e-x+ex=ex+3x2-12x+3
¡àG'£¨x£©=ex+6x-12
¹ÊG£¨x£©µÄͼÏóÔÚM´¦µÄÇÐÏßµÄбÂÊΪk0=G¡ä(
)=e
+3(x1+x2)-12
Ö±ÏßABµÄбÂÊkAB=
=
+3(x1+x2)-12
Èç¹ûk0=kAB£¬Ôò
=e
Ôò ex1-ex2=e
(x1-x2)¿É»¯Îªe
-e
=(x1-x2)
Áî
=t£¬ÉÏʽ¼´Îªet-e-t=2t
¹¹Ô캯Êýh£¨x£©=ex-e-x-2x£¬Ôòh'£¨x£©=ex+e-x-2¡Ý0£¬Ôòh£¨x£©ÔÚRÉÏÊÇÔöº¯Êý£¬
ÒòΪh£¨0£©=0£¬ËùÒÔh£¨t£©=0µÄ³äÒªÌõ¼þÊÇt=0£®´Ëʱ x1=x2ÓëÌõ¼þì¶Ü£®
ËùÒÔG£¨x£©µÄͼÏóûÓС°Æ½ºâÇÐÏß¡±
£¨¢ñ£©µ±a=1ʱf'£¨0£©=4£¬f£¨0£©=1
º¯ÊýÔÚ£¨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪy=4x+1
£¨¢ò£© f'£¨x£©=ex£¨x3-3x2-9x+a+3£©
Éèg£¨x£©=x3-3x2-9x+a+3£¬Ôòg'£¨x£©=3x2-6x-9=3£¨x-3£©£¨x+1£©
¡àg£¨x£©µÄ¼«´óֵΪg£¨-1£©=a+8£¬¼«Ð¡ÖµÎªg£¨3£©=a-24£¬
ÓÉÓÚf£¨x£©ÓÐÈý¸ö¼«Öµµã?f'£¨x£©ÓÐÈý¸öÁãµã?g£¨x£©ÓÐÈý¸öÁãµã
¡àg£¨x£©µÄ¼«´óֵΪÕý£¬ÇÒ¼«Ð¡ÖµÎª¸º£¬¼´ a+8£¾0£¬a-24£¼0
¿ÉµÃ-8£¼a£¼24
£¨¢ó£©ÓÉÌâÒâÖª£¬G£¨x£©=[f'£¨x£©-f£¨x£©]e-x+ex=ex+3x2-12x+3
¡àG'£¨x£©=ex+6x-12
¹ÊG£¨x£©µÄͼÏóÔÚM´¦µÄÇÐÏßµÄбÂÊΪk0=G¡ä(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
Ö±ÏßABµÄбÂÊkAB=
| G(x1)-G(x2) |
| x1-x2 |
| ex1-ex2 |
| x1-x2 |
Èç¹ûk0=kAB£¬Ôò
| ex1-ex2 |
| x1-x2 |
| x1+x2 |
| 2 |
Ôò ex1-ex2=e
| x1+x2 |
| 2 |
| x1-x2 |
| 2 |
| x2-x1 |
| 2 |
Áî
| x1-x2 |
| 2 |
¹¹Ô캯Êýh£¨x£©=ex-e-x-2x£¬Ôòh'£¨x£©=ex+e-x-2¡Ý0£¬Ôòh£¨x£©ÔÚRÉÏÊÇÔöº¯Êý£¬
ÒòΪh£¨0£©=0£¬ËùÒÔh£¨t£©=0µÄ³äÒªÌõ¼þÊÇt=0£®´Ëʱ x1=x2ÓëÌõ¼þì¶Ü£®
ËùÒÔG£¨x£©µÄͼÏóûÓС°Æ½ºâÇÐÏß¡±
µãÆÀ£º±¾Ì⿼²éº¯ÊýÓëµ¼ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°¸ùµÄ¸öÊýµÄÅжϣ¬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿