题目内容
已知等比数列{an}前n项和为Sn,前n项积为Tn,若S6=10,T6=8,则
+
+…+
.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a6 |
分析:易判断q≠1、{
}为等比数列,利用等比数列求和公式可把
+
+…+
表示出来,由S6=10及T6=8两式作商即可求得答案.
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a6 |
解答:解:设该等比数列的公比为q,由题意知q≠1,
由S6=10得,
=10①,
由T6=8得a1a2…a6=(a1a6)3=8,所以a1a6=2,即a12q5=2②,
①÷②得,
=5;
∵
=
=
,∴{
}为等比数列,公比为
,
∴
+
+…+
=
=
=5.
故答案为:5.
由S6=10得,
| a1(1-q6) |
| 1-q |
由T6=8得a1a2…a6=(a1a6)3=8,所以a1a6=2,即a12q5=2②,
①÷②得,
| 1-q6 |
| a1(1-q)q5 |
∵
| ||
|
| an |
| an+1 |
| 1 |
| q |
| 1 |
| an |
| 1 |
| q |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a6 |
| ||||
1-
|
| 1-q6 |
| a1(1-q)q5 |
故答案为:5.
点评:本题考查等比数列的通项公式、前n项和公式,考查学生的运算能力,属中档题.
练习册系列答案
相关题目