ÌâÄ¿ÄÚÈÝ
14£®ÒªµÃµ½º¯Êýy=cosxµÄͼÏó£¬Ö»Ð轫º¯Êý$y=sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóÉÏËùÓеĵãµÄ£¨¡¡¡¡£©| A£® | ºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È | |
| B£® | ºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È | |
| C£® | ºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È | |
| D£® | ºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È |
·ÖÎö ÓÉÌõ¼þ¸ù¾Ýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ¡¢ÓÕµ¼¹«Ê½£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º½«º¯Êý$y=sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóÉÏËùÓеĵãµÄ×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬
¿ÉµÃº¯Êýy=sin£¨x+$\frac{¦Ð}{3}$£©µÄͼÏó£»
ÔÙ°ÑËùµÃͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬¿ÉµÃº¯Êýy=sin£¨x+$\frac{¦Ð}{6}$+$\frac{¦Ð}{3}$£©=cosxµÄͼÏó£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓÕµ¼¹«Ê½µÄÓ¦Óã¬ÀûÓÃÁËy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®É躯Êýy=f£¨x£©ÔÚRÉÏÓж¨Ò壬¶ÔÓÚÈÎÒ»¸ø¶¨µÄÕýÊýp£¬¶¨Ò庯Êýfp£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬f£¨x£©¡Üp}\\{p£¬f£¨x£©£¾p}\end{array}\right.$£¬Ôò³Æº¯Êýfp£¨x£©Îªf£¨x£©µÄ¡°p½çº¯Êý¡±Èô¸ø¶¨º¯Êýf£¨x£©=x2-2x-1£¬p=2£¬ÔòÏÂÁнáÂÛ²»³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | fp[f£¨0£©]=f[fp£¨0£©] | B£® | fp[f£¨1£©]=f[fp£¨1£©] | C£® | fp[fp£¨2£©]=f[f£¨2£©] | D£® | fp[f£¨3£©]=f[f£¨3£©] |
6£®ÒÑÖª¸´ÊýzÂú×㣨2-i£©2•z=1£¬ÔòzµÄÐ鲿Ϊ£¨¡¡¡¡£©
| A£® | $\frac{3}{25}i$ | B£® | $\frac{3}{25}$ | C£® | $\frac{4}{25}i$ | D£® | $\frac{4}{25}$ |