题目内容
3.设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1=2,a3=b3,ab3=5.(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)记A={a1,a2,a3,…,a20},B={b1,b2,b3,…,b20},C=A∪B,求集合C中的各元素之和.
分析 (I)利用等差数列与等比数列的通项公式即可得出;
(Ⅱ)由an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.可得数列{an}和{bn}的相同项为:2,4,8,16.设等差数列{an}和等比数列{bn}的前n项和分别为Sn,Tn.由C=A∪B,可得集合C中的各元素之和=S20+T20-(2+4+8+16).
解答 解:(I)∵公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}满足:a1=b1=2,a3=b3,ab3=5.
∴$\left\{\begin{array}{l}2+2d=2{q^2}\\ 2+({b_3}-1)d=5\end{array}\right.$,
∴$\left\{\begin{array}{l}1+d={q^2}\\ 2+(2{q^2}-1)=5\end{array}\right.$,
∴2d2+d-3=0得d=1或$d=-\frac{3}{2}$.
又q2=1+d>0,
∴d=1⇒$q=\sqrt{2}$,
∴an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.
(Ⅱ)由an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.
可得数列{an}和{bn}的相同项为:2,4,8,16.
设等差数列{an}和等比数列{bn}的前n项和分别为Sn,Tn.
∵C=A∪B,
∴集合C中的各元素之和=S20+T20-(2+4+8+16)
=$\frac{20(2+21)}{2}$+$\frac{2[(\sqrt{2})^{20}-1]}{\sqrt{2}-1}$-30
=230+$2(\sqrt{2}+1)$(210-1)-30
=200+2046$(\sqrt{2}+1)$
=2046$\sqrt{2}$+2246.
点评 本题考查了等差数列与等比数列的通项公式及前n项和公式,考查了推理能力与计算能力,属于中档题.
| A. | α>β | B. | α2<β2 | C. | α<β | D. | α2>β2 |
| A. | $\sqrt{e}$ | B. | e2 | C. | e | D. | $\frac{e}{2}$ |