题目内容
圆
的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).
(1)求点P的坐标;
(2)焦点在x轴上的椭圆C过点P,且与直线
交于A,B两点,若
的面积为2,求C的标准方程.![]()
(1)
;(2)![]()
解析试题分析:(1)首先设切点![]()
![]()
,由圆的切线的性质,根据半径
的斜率可求切线斜率,进而可表示切线方程为
,建立目标函数
.故要求面积最小值,只需确定
的最大值,由
结合目标函数,易求;(2)设椭圆标准方程为
,点
在椭圆上,代入点得
①,利用弦长公式表示
,利用点到直线距离公式求高,进而表示
的面积,与①联立,可确定
,进而确定椭圆的标准方程.
(1)设切点坐标为![]()
.则切线斜率为
.切线方程为
.即
.此时,两个坐标轴的正半轴于切线围成的三角形面积
.由
知当且仅当
时,
有最大值.即
有最小值.因此点
的坐标为
.
(2)设
的标准方程为
.点
.由点
在
上知
.并由
得
.又
是方程的根,因此
,由
,
,得
.由点
到直线
的距离为
及
得
.解得
或
.因此
,
(舍)或
,
.从而所求
的方程为
.
考点:1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.
练习册系列答案
相关题目