题目内容

定义在R上的函数f(x)满足(x+2)f′(x)<0(x≠-2)(其中f′(x)是函数f(x)的导数),又a=f(log
1
2
3)
b=f[(
1
3
)0.1],c=f(ln3)
,则(  )
分析:先确定函数的自变量的范围和大小关系,再根据导数的符号确定函数的单调性,进一步进行判定函数值的大小即可.
解答:解:∵-2<log
1
2
3
<0<(
1
3
)
0.3
<1<ln3
而(x+2)f′(x)<0,若x+2>0时,则f′(x)<0
所以函数f(x)在(-2,+∞)上是单调减函数,
∴f(ln3)<f((
1
3
)
0.3
)<f(log
1
2
3
),
∴c<b<a,
故选D.
点评:本题主要考查了函数的单调性与导数的关系、对数值大小的比较等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网