ÌâÄ¿ÄÚÈÝ
ÒÔOΪԵ㣬(1)Çóx0¹ØÓÚtµÄº¯Êýx0=f(x)µÄ±í´ïʽ£¬ÅжϺ¯Êýf(t)µÄµ¥µ÷ÐÔ£¬²¢Ö¤Ã÷ÄãµÄÅжϣ»
(2)Éè¡÷OFGµÄÃæ»ýS=
t£¬ÈôÒÔOΪÖÐÐÄ£¬FΪ½¹µãµÄÍÖÔ²¾¹ýµãG£¬Çóµ±|
|È¡µÃ×îСֵʱÍÖÔ²µÄ·½³Ì£»
(3)ÔÚ(2)µÄÌõ¼þÏ£¬ÈôµãPµÄ×ø±êΪ(0£¬92)£¬C¡¢DÊÇÍÖÔ²ÉϵÄÁ½µã£¬ÇÒ
=¦Ë
(¦Ë¡Ù1)£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§.
½â£º(1)ÓÉÌâÒ⣬
=(x0-t£¬y0)£¬
=(t£¬0)£¬
![]()
Ôò
¡¤
=t(x0-t)=1£¬¡àx0=f(t)=t+
.
Éè3¡Üt1£¼t2£¬Ôòf(t2)-f(t1)=(t2+
)-(t1+
)=
.
¡ßt2-t1£¾0£¬t1t2-1£¾0£¬t1t2£¾0£¬¡àf(t2)-f(t1)£¾0£¬f(t2)£¾f(t1)£¬
¡àf(t)ÔÚ£Û3£¬+¡Þ)Éϵ¥µ÷µÝÔö.
(2)ÓÉS=
|
||y0|=
t¡¤|y0|=
t£¬µÃy0=¡À
£¬
¡àµãGµÄ×ø±êΪ(t+
£¬¡À
)£¬|
|2=(t+
)2+
.
¡ßf(t)ÔÚ£Û3£¬+¡Þ£ÝÉϵ¥µ÷µÝÔö£¬
¡àµ±t=3ʱ£¬|
|È¡µÃ×îСֵ£¬´ËʱF¡¢GµÄ×ø±ê·Ö±ðÊÇ(3£¬0)¡¢(
£¬¡À
).
ÓÉÌâÒâÉèÍÖÔ²·½³ÌΪ
=1£¬ÓɵãGÔÚÍÖÔ²ÉϵÃ
=1£¬½âµÃb2=9£¬
¡àËùÇóÍÖÔ²·½³ÌΪ
=1.
(3)·½·¨1£ºÉèC¡¢DµÄ×ø±ê·Ö±ðΪ(x£¬y)¡¢(m£¬n)£¬Ôò
=(x£¬y-
)£¬
=(m£¬n-
).
ÓÉ
=¦Ë
£¬µÃ(x£¬y-
)=¦Ë(m£¬n-
)£¬x=¦Ëm£¬y=¦Ën-
¦Ë+
.
¡ßC¡¢DÔÚÍÖÔ²ÉÏ£¬¡à
=1£¬
=1£¬ÏûÈ¥mµÃ n=
.
ÓÖ¡ß|n|¡Ü3£¬¡à|
|¡Ü3£¬½âµÃ
¡Ü¦Ë¡Ü5£¬¡àʵÊý¦ËµÄȡֵ·¶Î§ÊÇ£Û
£¬1)¡È(1£¬5£Ý.
·½·¨2£º¼ÇµãA¡¢BµÄ×ø±ê·Ö±ðΪ(0£¬3)¡¢(0£¬-3)£¬¹ýµãA¡¢B·Ö±ð×÷yÖáµÄ´¹Ïߣ¬½»Ö±ÏßPCÓÚµãM¡¢N.
![]()
Èô|
|£¼|
|£¬Ôò|
|¡Ü|
|£¬|
|¡Ý|
|£¬
¡à1£¼
¡Ü
=
=5£¬Ôò1£¼
¡Ü5£¬
¡Ü¦Ë£¼1£»
Èô|
|£¾|
|£¬Í¬Àí¿ÉµÃ1£¼
¡Ü
=
=5£¬Ôò1£¼¦Ë¡Ü5.
×ÛÉÏ£¬ÊµÊý¦ËµÄȡֵ·¶Î§ÊÇ£Û
£¬1)¡È(1£¬5£Ý.