题目内容
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| ||
| 2 |
(Ⅰ)求函数y=f(x)的对称轴方程;
(Ⅱ)画出y=f(x)在区间[-
| 5π |
| 6 |
| 7π |
| 6 |
| 2π |
| 3 |
| π |
| 3 |
分析:(Ⅰ)利用三角函数的恒等变换化简函数f(x)的解析式为f(x)=sin(x+
),令x+
=kπ+
,k∈z,求得x的表达式,即可得到函数的图象的对称轴.
(Ⅱ)用五点法做出函数y=f(x)在区间[-
,
]上的图象.
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
(Ⅱ)用五点法做出函数y=f(x)在区间[-
| 5π |
| 6 |
| 7π |
| 6 |
解答:(Ⅰ)∵f(x)=cos
(sin
+
cos
)-
=cos
sin
+
cos2
-
(2分)
=
sinx+
cosx=sin(x+
).(4分)
令x+
=kπ+
,k∈z,求得x=kπ+
(k∈Z),
∴f(x)=sin(x+
)的对称轴方程为:x=kπ+
(k∈Z).(6分)
(Ⅱ)由-
≤x≤
,可得-
≤x+
≤
.
列表:
函数y=f(x)在区间[-
,
]上的图象如下:
(10分)
∴函数y=f(x)最大值为1,最小值为-
.(12分)
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| ||
| 2 |
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
令x+
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
∴f(x)=sin(x+
| π |
| 3 |
| π |
| 6 |
(Ⅱ)由-
| 5π |
| 6 |
| 7π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
列表:
2x+
|
-
|
0 |
|
π |
| ||||||||||
| x | -
|
-
|
|
|
| ||||||||||
| f(x) | -1 | 0 | 1 | 0 | -1 |
| 5π |
| 6 |
| 7π |
| 6 |
∴函数y=f(x)最大值为1,最小值为-
| ||
| 2 |
点评:本题主要考查三角函数的恒等变换和化简求值,y=Asin(ωx+∅)的图象和性质,用五点法作y=Asin(ωx+∅)的图象,属于中档题.
练习册系列答案
相关题目