题目内容

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b
=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的值域.
(Ⅰ)∵2asinB-
3
b
=0
∴由正弦定理,得:2sinAsinB-
3
sinB
=0,
∵B是三角形内角,可得sinB>0…(3分)
∴等式的两边约去sinB,得2sinA-
3
=0,即sinA=
3
2
…(5分)
因此,A=
π
3
或A=
3
           …(7分)
(Ⅱ)∵A为锐角,∴结合(I)得A=
π
3

结合三角形内角和,得B+C=
3
           …(9分)
∵y=
3
sinB+sin(C-
π
6
)=
3
sinB+sin(
π
2
-B)
=
3
sinB+cosB=2sin(B+
π
6
)           …(12分)
∵B∈(0,
π
3
),得B+
π
6
∈(
π
6
6

∴sin(B+
π
6
)∈(
1
2
,1]
,可得2sin(B+
π
6
)∈(1,2]
因此,函数y=
3
sinB+sin(C-
π
6
)的值域域为(1,2]…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网