题目内容

定义在R+上的函数f(x)满足:
(1)存在a>1,使f(a)≠0;
(2)对任意的实数b,有f(xb)=bf(x).若方程f(mx)•f(mx2)=4f2(a)的所有解大于1,求m的取值范围.

解:令t=xb,则b=logxt,
则f(t)=logxt•f(x)
即logxt=
若f(mx)•f(mx2)=4f2(a)的所有解大于1,
的所有解大于1,
即loga(mx)•loga(mx2)-4=0的所有解大于1,
即2loga2x+3logam•logax+loga2m-4=0的所有解大于1,
令u=logax,由a>1,
则u2x+3logam•u+loga2m-4=0的所有解大于0
由韦达定理可得
解得:0<m≤
故m的取值范围为(0,]
分析:令t=xb,则b=logxt,可得logxt=,进而根据方程f(mx)•f(mx2)=4f2(a)的所有解大于1,我们可以得到2loga2x+3logam•logax+loga2m-4=0的所有解大于1,令u=logax,则u2x+3logam•u+loga2m-4=0的所有解大于0,结合韦达定理,可以构造一个关于m的不等式组,解不等式组,即可得到答案.
点评:本题考查的知识点是函数与议程的综合应用,抽象函数的应用,其中根据已知条件,得到logxt=,从而将抽象问题具体化,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网