题目内容

已知定义在(-1,1)上的奇函数f(x),在定义域上为减函数,且f(1-a)+f(1-2a)>0,则实数a的取值范围是
2
3
,1
2
3
,1
分析:由奇函数的性质可把f(1-a)+f(1-2a)>0化为f(1-a)>f(2a-1),由单调递减可得1-a<2a-1,再考虑到函数定义域,即可得到a的取值范围.
解答:解:由f(1-a)+f(1-2a)>0,得f(1-a)>-f(1-2a),
又∵f(x)在(-1,1)上为奇函数,
∴f(1-2a)=-f(2a-1),
∴f(1-a)>f(2a-1),
又∵f(x)是定义在(-1,1)上的减函数,
∴1-a<2a-1,
-1<1-a<1
-1<2a-1<1
1-a<2a-1
,解得
0<a<2
0<a<1
a>
2
3
,即
2
3
<a<1,
所以实数a的取值范围为(
2
3
,1
).
故答案为:(
2
3
,1
).
点评:本题考查函数的奇偶性与单调性综合应用,解决本题的关键是利用函数的性质将不等式进行转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网