题目内容

农科所对冬季昼夜温差大小与某反季节大豆新品种发芽量之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每月100颗种子中的发芽数,得到如下资料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(°C) 10 11 13 12 8
发芽数x(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,在对被选取的2组数据进行检查.
(Ⅰ)若选取的是12月1日语12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=bx+a;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性方程是可靠地,试问(Ⅰ)中所得到的线性方程是否可靠?
参考公式:
b
=
 
 
xiyi-n
.
x
.
y
 
 
x
2
i
-n
.
x2
a
=
.
y
-
b
.
x
分析:(Ⅰ)根据所给的数据,先求出x,y的平均数,再根据最小二乘法求出线性回归方程的系数,写出线性回归方程;
(Ⅱ)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.
解答:解:(Ⅰ)由数据,求得
.
x
=12,
.
y
=27.
由公式
b
=
 
 
xiyi-n
.
x
.
y
 
 
x
2
i
-n
.
x2
,求得b=
5
2
,∴a=
.
y
-b
.
x
=-3
∴y关于x的线性回归方程为
y
=
5
2
x-3.
(Ⅱ)当x=10时,
y
=
5
2
×10-3=22,|22-23|<2;
同样当x=8时,
y
=
5
2
×8-3=17,|17-16|<2;
∴该研究所得到的回归方程是可靠的.
点评:本题考查线性回归方程的求法,考查最小二乘法,考查估计验算所求的方程是否是可靠的,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网