题目内容
14.试求下列函数的定义域:(1)y=log(x+2)(32-4x);
(2)y=$\frac{\sqrt{lo{g}_{0.8}x-1}}{2x-1}$;
(3)y=$\frac{1}{\sqrt{1-lo{g}_{a}(x+a)}}$.
分析 根据函数成立的条件即可求函数的定义域.
解答 解:(1)要使函数有意义,则$\left\{\begin{array}{l}{32-{4}^{x}>0}\\{x+2>0}\\{x+2≠1}\end{array}\right.$,
即$\left\{\begin{array}{l}{{2}^{2x}<{2}^{5}}\\{x>-2}\\{x≠-1}\end{array}\right.$,即$\left\{\begin{array}{l}{2x<5}\\{x>-2}\\{x≠1}\end{array}\right.$,则$\left\{\begin{array}{l}{x<\frac{5}{2}}\\{x>-2}\\{x≠-1}\end{array}\right.$,即-2<x<-1或-1<x<$\frac{5}{2}$,故函数的定义域为{x|-2<x<-1或-1<x<$\frac{5}{2}$}.
(2)要使函数有意义,则$\left\{\begin{array}{l}{2x-1≠0}\\{lo{g}_{0.8}x-1≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{x≠\frac{1}{2}}\\{lo{g}_{0.8}x≥1}\end{array}\right.$,即$\left\{\begin{array}{l}{x≠\frac{1}{2}}\\{0<x≤0.8}\end{array}\right.$,解得0<x≤$\frac{4}{5}$且x≠$\frac{1}{2}$,即函数的定义域为{x|0<x≤$\frac{4}{5}$且x≠$\frac{1}{2}$}.
(3)要使函数有意义,则$\left\{\begin{array}{l}{x+a>0}\\{1-lo{g}_{a}(x+a)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>-a}\\{lo{g}_{a}(x+a)<1}\end{array}\right.$,
则$\left\{\begin{array}{l}{a>1}\\{x>-a}\\{x+a<a}\end{array}\right.$或$\left\{\begin{array}{l}{0<a<1}\\{x>-a}\\{x+a>a}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>1}\\{x>-a}\\{x<0}\end{array}\right.$或$\left\{\begin{array}{l}{0<a<1}\\{x>-a}\\{x>0}\end{array}\right.$,
即a>1时,-a<x<0,此时函数的定义域为(-a,0),
0<a<1时,x>0,此时函数的定义域为(0,+∞).
点评 本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件