题目内容

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是菱形且∠ADC=60°.
(1)求证:PA⊥CD;
(2)求二面角P-AB-D的大小.
(1)作PO⊥CD于O,连接OA
由侧面PDC与底面ABCD垂直,则PO⊥面ABCD
所以PO⊥OA且PO⊥OC,又由∠ADC=60°,DO=1,AD=2,
则∠DOA=90°,即OA⊥CD
分别以OA,OC,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,
由已知P(0,0,
3
),A(
3
,0,0),D(0,-1,0),C(0,1,0),
PA
=(
3
,0,-
3
),
CD
=(0,-2,0),
PA
CD
=0,∴
PA
CD

∴PA⊥CD.
(2)∵P(0,0,
3
),A(
3
,0,0),B(
3
,2,0),D(0,-1,0),
PA
=(
3
,0,-
3
),
PB
=(
3
,2,-
3
),
DA
=(
3
,1,0)
DB
=(
3
,3,0

设平面ABP的法向量为
m
=(x1y1z1)
,则
m
PA
=0
m
PB
=0

3
x1-
3
z1=0
3
x1+2y1-
3
z1=0
,解得
m
=(1,0,1).
设平面ABD的法向量为
n
=(x2y2z2)
,则
n
DA
=0
n
DB
=0

3
x2+y2=0
3
x2+3y2=0
,解得
n
=(0,0,1),
设二面角P-AB-D的平面角为θ,
则cosθ=|cos<
m
n
>|=|
1
2
×1
|=
2
2

∴θ=45°,
故二面角P-AB-D的大小为45°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网