题目内容
设ω>0,函数y=sin(ωx+)+2的图像向右平移个单位后与原图像重合,则ω的最小值是
3
如图,OA=2(单位:m),OB=1(单位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m s)沿线段OB行至点B,再以速度3(单位:m s)沿圆弧行至点C后停止,乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是
A.
B.
C.
D.
设S,T,是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是
A.A=N*,B=N
C.A={x|0<x<1},B=R
D.A=Z,B=Q
设函数y=f(x)为区间(0,1]上的图像是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积,先产生两组i每组N个,区间(0,1]上的均匀随机数x1,x2,…xn和y1,y2,…,yn,由此得到V个点(x,y)(i-1,2…N).再数出其中满足y1≤f(x)(i=1,2…N)的点数N1,那么由随机模拟方法可得S的近似值为________
设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足;
(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).
那么称这两个集合“保序同构”.现给出以下3对集合:
①A=N,B=N*;
②A={x|-1≤x≤3},B={x|-8≤x≤10};
③A={x|0<x<1},B=R.
其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)
设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .