题目内容

已知函数y=ax-1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中m,n>0,则
1
m
+
1
n
的最小值为______.
∵函数y=ax-1(a>0,且a≠1)的图象恒过定点A,
可得A(1,1),
∵点A在一次函数y=mx+n的图象上,
∴m+n=1,∵m,n>0,
∴m+n=1≥2
mn

∴mn≤
1
4

∴(
1
m
+
1
n
)=
m+n
mn
=
1
mn
≥4(当且仅当n=
1
2
,m=
1
2
时等号成立),
故答案为4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网