ÌâÄ¿ÄÚÈÝ
ÉèAÊÇÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÎÞÇîÊýÁÐ{an}µÄ¼¯ºÏ£º
¢Ù
¡Üan+1£» ¢Úan¡ÜM£®ÆäÖÐn¡ÊN*£¬MÊÇÓënÎ޹صij£Êý£®
£¨¢ñ£©Èô{an}ÊǵȲîÊýÁУ¬SnÊÇÆäǰnÏîµÄºÍ£¬a3=4£¬S3=18£¬Ö¤Ã÷£º{Sn}¡ÊA£»
£¨¢ò£©¶ÔÓÚ£¨¢ñ£©ÖÐÊýÁÐ{an}£¬ÕýÕûÊýn1£¬n2£¬¡£¬nt¡£¨t¡ÊN*£©Âú×ã7£¼n1£¼n2£¼¡£¼nt£¼¡£¨t¡ÊN*£©£¬²¢ÇÒʹµÃa6£¬a7£¬an1£¬an2£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ® Èôbm=10m-nm£¨m¡ÊN*£©£¬Ôò{bm}¡ÊAÊÇ·ñ³ÉÁ¢£¿Èô³ÉÁ¢£¬ÇóMµÄȡֵ·¶Î§£¬Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÉèÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊý£¬ÇÒ{cn}¡ÊA£¬Ö¤Ã÷£ºcn¡Ücn+1£®
¢Ù
| an+an+2 |
| 2 |
£¨¢ñ£©Èô{an}ÊǵȲîÊýÁУ¬SnÊÇÆäǰnÏîµÄºÍ£¬a3=4£¬S3=18£¬Ö¤Ã÷£º{Sn}¡ÊA£»
£¨¢ò£©¶ÔÓÚ£¨¢ñ£©ÖÐÊýÁÐ{an}£¬ÕýÕûÊýn1£¬n2£¬¡£¬nt¡£¨t¡ÊN*£©Âú×ã7£¼n1£¼n2£¼¡£¼nt£¼¡£¨t¡ÊN*£©£¬²¢ÇÒʹµÃa6£¬a7£¬an1£¬an2£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ® Èôbm=10m-nm£¨m¡ÊN*£©£¬Ôò{bm}¡ÊAÊÇ·ñ³ÉÁ¢£¿Èô³ÉÁ¢£¬ÇóMµÄȡֵ·¶Î§£¬Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÉèÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊý£¬ÇÒ{cn}¡ÊA£¬Ö¤Ã÷£ºcn¡Ücn+1£®
£¨¢ñ£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îÊÇd£¬
Ôòa1+2d=4£¬3a1+3d=18£¬
½âµÃa1=8£¬d=-2£®£¬
ËùÒÔSn=na1+
d=-n2+9n£®
ÓÉ
-Sn+1=
[(-n2+9n)-(n+2)2+9(n+2)+2(n+1)2-18(n+1)]£¼0£¬
µÃ
£¼Sn+1£¬ÊʺÏÌõ¼þ ¢Ù£®
ÓÖSn=-n2+9n=-(n-
)2+
£¬
ËùÒÔµ±n=4»ò5ʱ£¬SnÈ¡µÃ×î´óÖµ20£¬
¼´Sn¡Ü20£¬ÊʺÏÌõ¼þ ¢Ú£®
ËùÒÔ£¬{Sn}¡ÊA£®4·Ö
£¨¢ò£©ÓÉ£¨¢ñ£©µÃa1=8£¬d=-2£¬
¹Êan=8-2£¨n-1£©=10-2n£¬
Òò´Ëa6=-2£¬a7=-4£®
ÒòΪa6£¬a7£¬an1£¬an2£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬
¹Êq=
=2£®
ËùÒÔant=a6•qt+1=-2•2t+1£®
ÓÖant=10-2nt£¬ËùÒÔnt=2t+1+5£®
´Ó¶øbm=10m-2m+1-5£®
ÒòΪ
-bm+1=
-[10£¨m+1£©-2m+2-5]=-2m£¼0£¬
¹Ê
£¼bm+1£®
ÓÖb1£¼b2£¼b3£¬²¢ÇÒb3£¾b4£¾b5£¾¡£¬
¶øb3=10¡Á3-23+1-5=9£¬
¹Êµ±m¡ÊN*ʱ£¬bm¡Ü9£®
×ÛÉÏ£¬µ±m¡ÊN*ʱ£¬{bm}¡ÊA£¬´ËʱMµÄȡֵ·¶Î§ÊÇ[9£¬+¡Þ£©£®9·Ö
£¨¢ó£©¼ÙÉè´æÔÚÕýÕûÊýk£¬Ê¹µÃck£¾ck+1³ÉÁ¢£®
ÓÉÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊý£¬
¿ÉµÃck¡Ýck+1+1£¬¼´ck+1¡Ück-1£®
¡ß
¡Ück+2£¬
¡àck+2¡Ü2ck+1-ck
¡Ü2£¨ck-1£©-ck
=ck-2£¬
ÓÉck+2¡Ü2ck+1-ck¼°ck£¾ck+1£¬
µÃck+2£¼2ck+1-ck+1=ck+1£¬
¹Êck+2¡Ück+1-1£®
¡ß
¡Ück+2£¬
¡àck+3¡Ü2ck+2-ck+1¡Ü2£¨ck+1-1£©-ck+1=ck+1-2¡Ück-3£¬
ÒÀ´ËÀàÍÆ£¬¿ÉµÃck+m¡Ück-m£¨m¡ÊN*£©£®
Éèck=p£¨p¡ÊN*£©£¬Ôòµ±m=pʱ£¬ÓÐck+p¡Ück-p=0£¬
ÕâÏÔÈ»ÓëÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊýì¶Ü£®
ËùÒÔ¼ÙÉè²»³ÉÁ¢£¬¼´¶ÔÓÚÈÎÒân¡ÊN*£¬¶¼ÓÐcn¡Ücn+1³ÉÁ¢£®14·Ö£®
Ôòa1+2d=4£¬3a1+3d=18£¬
½âµÃa1=8£¬d=-2£®£¬
ËùÒÔSn=na1+
| n(n-1) |
| 2 |
ÓÉ
| Sn+Sn+2 |
| 2 |
| 1 |
| 2 |
µÃ
| Sn+Sn+2 |
| 2 |
ÓÖSn=-n2+9n=-(n-
| 9 |
| 2 |
| 81 |
| 4 |
ËùÒÔµ±n=4»ò5ʱ£¬SnÈ¡µÃ×î´óÖµ20£¬
¼´Sn¡Ü20£¬ÊʺÏÌõ¼þ ¢Ú£®
ËùÒÔ£¬{Sn}¡ÊA£®4·Ö
£¨¢ò£©ÓÉ£¨¢ñ£©µÃa1=8£¬d=-2£¬
¹Êan=8-2£¨n-1£©=10-2n£¬
Òò´Ëa6=-2£¬a7=-4£®
ÒòΪa6£¬a7£¬an1£¬an2£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬
¹Êq=
| a7 |
| a6 |
ËùÒÔant=a6•qt+1=-2•2t+1£®
ÓÖant=10-2nt£¬ËùÒÔnt=2t+1+5£®
´Ó¶øbm=10m-2m+1-5£®
ÒòΪ
| bm+bm+2 |
| 2 |
| (10m-2m+1-5)+[10(m+2)-2m+3-5] |
| 2 |
¹Ê
| bm+bm+2 |
| 2 |
ÓÖb1£¼b2£¼b3£¬²¢ÇÒb3£¾b4£¾b5£¾¡£¬
¶øb3=10¡Á3-23+1-5=9£¬
¹Êµ±m¡ÊN*ʱ£¬bm¡Ü9£®
×ÛÉÏ£¬µ±m¡ÊN*ʱ£¬{bm}¡ÊA£¬´ËʱMµÄȡֵ·¶Î§ÊÇ[9£¬+¡Þ£©£®9·Ö
£¨¢ó£©¼ÙÉè´æÔÚÕýÕûÊýk£¬Ê¹µÃck£¾ck+1³ÉÁ¢£®
ÓÉÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊý£¬
¿ÉµÃck¡Ýck+1+1£¬¼´ck+1¡Ück-1£®
¡ß
| ck+1+ck+2 |
| 2 |
¡àck+2¡Ü2ck+1-ck
¡Ü2£¨ck-1£©-ck
=ck-2£¬
ÓÉck+2¡Ü2ck+1-ck¼°ck£¾ck+1£¬
µÃck+2£¼2ck+1-ck+1=ck+1£¬
¹Êck+2¡Ück+1-1£®
¡ß
| ck+1+ck+3 |
| 2 |
¡àck+3¡Ü2ck+2-ck+1¡Ü2£¨ck+1-1£©-ck+1=ck+1-2¡Ück-3£¬
ÒÀ´ËÀàÍÆ£¬¿ÉµÃck+m¡Ück-m£¨m¡ÊN*£©£®
Éèck=p£¨p¡ÊN*£©£¬Ôòµ±m=pʱ£¬ÓÐck+p¡Ück-p=0£¬
ÕâÏÔÈ»ÓëÊýÁÐ{cn}µÄ¸÷Ïî¾ùΪÕýÕûÊýì¶Ü£®
ËùÒÔ¼ÙÉè²»³ÉÁ¢£¬¼´¶ÔÓÚÈÎÒân¡ÊN*£¬¶¼ÓÐcn¡Ücn+1³ÉÁ¢£®14·Ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿