题目内容
已知函数f(x)=
-
(1)判断函数f(x)的奇偶性.
(2)当x∈(
,
)时,求函数f(x)的值域.
(3)若
=(sinα,1),
=(cosα,1)并且
∥
,求f(α)的值.
| sin4x+cos4x+sin2xcos2x |
| 2-sin2x |
| 1-cosx | ||
4sin2
|
(1)判断函数f(x)的奇偶性.
(2)当x∈(
| π |
| 6 |
| π |
| 2 |
(3)若
| a |
| b |
| a |
| b |
f(x)=-
-
=
-
=
-
=
sin2x.
(1)因为函数f(x)的定义域为{x|x∈R且x≠2kπ,k∈Z},f(-x)=-f(x)所以函数f(x)为奇函数;
(2)当x∈(
,
)时,2x∈(
,π),函数中sin2x的最大值为1,最小值为0且取不到,所以f(x)的最大值为
,最小值为0,所以f(x)的值域为(0,
];
(3)由
∥
得sinα-cosα=0,
∴
(
sinα-
cosα)=
sin(α-
)=0,
所以α-
=kπ,解得α=kπ+
,
∴f(α)=
sin2α=
sin(2kπ+
)=
sin
=
.
| (sin2x+cos2x)2-sin2xcos2x |
| 2-sin2x |
2sin2
| ||
4sin2
|
1-
| ||
| 2-sin2x |
| 1 |
| 2 |
=
(1-
| ||||
2(1-
|
| 1 |
| 2 |
| 1 |
| 4 |
(1)因为函数f(x)的定义域为{x|x∈R且x≠2kπ,k∈Z},f(-x)=-f(x)所以函数f(x)为奇函数;
(2)当x∈(
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
(3)由
| a |
| b |
∴
| 2 |
| ||
| 2 |
| ||
| 2 |
| 2 |
| π |
| 4 |
所以α-
| π |
| 4 |
| π |
| 4 |
∴f(α)=
| 1 |
| 4 |
| 1 |
| 4 |
| π |
| 2 |
| 1 |
| 4 |
| π |
| 2 |
| 1 |
| 4 |
练习册系列答案
相关题目