题目内容
(2013•和平区二模)在△ABC中,A=
,cosB=
.
(I)求cos C;
(II)设BC=
,求AC和AB.
| π |
| 4 |
| ||
| 10 |
(I)求cos C;
(II)设BC=
| 5 |
分析:(I)由cosB的值及B为三角形的内角,利用同角三角函数间的基本关系求出sinB的值,由三角形的内角和定理表示出C,再利用诱导公式及两角和与差的余弦函数公式即可求出cosC的值;
(II)由BC,sinA,sinB的值,利用正弦定理求出AC的长,再利用余弦定理即可求出AB的长.
(II)由BC,sinA,sinB的值,利用正弦定理求出AC的长,再利用余弦定理即可求出AB的长.
解答:解:(I)∵cosB=
,B∈(0,π),
∴sinB=
=
,
∵C=π-(A+B),A=
,
∴cosC=-cos(
+B)=-
×
+
×
=
;
(II)根据正弦定理
=
得:AC=
=
=3,
再根据余弦定理得:AB2=9+5-2×3×
×
=8,
则AB=2
.
| ||
| 10 |
∴sinB=
| 1-cos2B |
3
| ||
| 10 |
∵C=π-(A+B),A=
| π |
| 4 |
∴cosC=-cos(
| π |
| 4 |
| ||
| 2 |
| ||
| 10 |
| ||
| 2 |
3
| ||
| 10 |
| ||
| 5 |
(II)根据正弦定理
| AC |
| sinB |
| BC |
| sinA |
| BCsinB |
| sinA |
| ||||||
|
再根据余弦定理得:AB2=9+5-2×3×
| 5 |
| ||
| 5 |
则AB=2
| 2 |
点评:此题考查了正弦、余弦定理,诱导公式,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目