题目内容
给出下列命题:
①若
2+
2=0,则
=
=
;
②已知
、
、
是三个非零向量,若
+
=
,则|
•
|=|
•
|,
③在△ABC中,a=5,b=8,c=7,则
•
=20;
④
与
是共线向量?
•
=|
||
|.
其中真命题的序号是______.(请把你认为是真命题的序号都填上)
①若
| a |
| b |
| a |
| b |
| 0 |
②已知
| a |
| b |
| c |
| a |
| b |
| 0 |
| a |
| c |
| b |
| c |
③在△ABC中,a=5,b=8,c=7,则
| BC |
| CA |
④
| a |
| b |
| a |
| b |
| a |
| b |
其中真命题的序号是______.(请把你认为是真命题的序号都填上)
根据向量的有关性质,依次分析可得:
①由
2+
2=0,可得|
|=|
|=0,∴
=
=
.∴①正确.
②
+
=0,∴
=-
,|
•
|=|
||
||cos<
,
>|,|
•
|=|
||
||cos<
,
>|=|
||
||cos<-
,
>|=
|
||
||cos(π-<
,
>)|=|
||
||cos<
,
>|.∴②正确.
③cosC=
=
=
.
•
=|
||
|cos(π-C)=5×8×(-
)=-20.∴③不正确.
④
与
是共线向量?
=λ
(
≠0)?
•
=λ
2,而|
||
|=|λ
||
|=|λ||
|2.
∴④不正确.
故答案为:①②.
①由
| a |
| b |
| a |
| b |
| a |
| b |
| 0 |
②
| a |
| b |
| a |
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| c |
| b |
| c |
| b |
| c |
| a |
| c |
| a |
| c |
|
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
③cosC=
| a2+b2-c2 |
| 2ab |
| 25+64-49 |
| 2×5×8 |
| 1 |
| 2 |
| BC |
| CA |
| BC |
| CA |
| 1 |
| 2 |
④
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| b |
| b |
∴④不正确.
故答案为:①②.
练习册系列答案
相关题目