题目内容

已知函数f(x)=lnx-2x,(K是常数)
(1)求函数f(x)的单调区间;
(2)若f(x)<x恒成立,求K的取值范围.
(1)由f(x)=lnx-2kx,
f′(x)=
1
x
-2k
…(1分)
∵f(x)的定义域为(0,+∞),
∴当k≤0时,f′(x)=
1
x
-2k>0
,f(x)在(0,+∞)是增函数.   …(3分)
当k>0时,由
1
x
-2k>0
可得x<
1
2k

∴f(x)在(0,
1
2k
)是增函数,在(
1
2k
,+∞)是减函数.         …(5分)
综上,当k≤0时,f(x)的单调增区间是(0,+∞);
当K>0时,f(x)的单调增区间是(0,
1
2k
),单调减区间是(
1
2k
,+∞).…(6分)
(2)由f(x)<x恒成立,得lnx-2kx-x<0恒成立,x∈(0,+∞).
即2kx>lnx-x,
2k>
lnx
x
-1
恒成立. …(8分)
g(x)=
lnx
x
-1
,则g′(x)=
1-lnx
x2

g′(x)=
1-lnx
x2
=0
得x=e.
当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.               …(10分)
∴g(x)=
lnx
x
-1
在x=e时取得极大值g(e)=
1
e
-1

且为g(x)在(0,+∞)上的最大值.
2k>
1
e
-1,k>
1-e
2e
x2,y2…(11分)
∴k的取值范围是(
1-e
2e
,+∞)
.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网