搜索
题目内容
设
f
(
x
)=(
x
+
)
10
,则
f
′(1)
·f
′(-1)=_________.
试题答案
相关练习册答案
50
练习册系列答案
新课标阶梯阅读训练系列答案
考前模拟预测试卷系列答案
同步词汇训练系列答案
优加学案创新金卷系列答案
单元自测系列答案
冠亚中考模拟试题系列答案
学业水平考试标准测评卷系列答案
培优应用题卡系列答案
口算心算速算应用题系列答案
同步拓展阅读系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)
3
.
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x
1
,x
2
∈(-1,1),不等式|f(x
1
)-f(x
2
)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x
≥1,f(x
)≥1时,有f[f(x
)]=x
,求证:f(x
)=x
.
设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)
3
.
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x
1
,x
2
∈(-1,1),不等式|f(x
1
)-f(x
2
)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x
≥1,f(x
)≥1时,有f[f(x
)]=x
,求证:f(x
)=x
.
设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)
3
.
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x
1
,x
2
∈(-1,1),不等式|f(x
1
)-f(x
2
)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x
≥1,f(x
)≥1时,有f[f(x
)]=x
,求证:f(x
)=x
.
设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案