题目内容

函数y=sin( 2x+
π
3
 )sin( 2x+
π
2
 )
的最大值是
2+
3
4
2+
3
4
分析:利用积化和差公式将y=sin(2x+
π
3
)sin(2x+
π
2
)转化为y=
1
2
cos
π
6
-
1
2
cos(4x+
6
)即可.
解答:解:∵y=sin(2x+
π
3
)sin(2x+
π
2

=-
1
2
{[cos(2x+
π
3
+(2x+
π
2
)]-cos[(2x+
π
3
)-(2x+
π
2
)]}
=-
1
2
cos(4x+
6
)+
1
2
cos
π
6

=-
1
2
cos(4x+
6
)+
1
2
×
3
2

∴ymax=
1
2
+
3
4
=
2+
3
4

故答案为:
2+
3
4
点评:本题考查积化和差公式的运用,将y=sin(2x+
π
3
)sin(2x+
π
2
)转化为和差是关键,也是难点,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网