题目内容
函数y=sin( 2x+
)sin( 2x+
)的最大值是
.
| π |
| 3 |
| π |
| 2 |
2+
| ||
| 4 |
2+
| ||
| 4 |
分析:利用积化和差公式将y=sin(2x+
)sin(2x+
)转化为y=
cos
-
cos(4x+
)即可.
| π |
| 3 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 5π |
| 6 |
解答:解:∵y=sin(2x+
)sin(2x+
)
=-
{[cos(2x+
+(2x+
)]-cos[(2x+
)-(2x+
)]}
=-
cos(4x+
)+
cos
=-
cos(4x+
)+
×
∴ymax=
+
=
.
故答案为:
.
| π |
| 3 |
| π |
| 2 |
=-
| 1 |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
=-
| 1 |
| 2 |
| 5π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
=-
| 1 |
| 2 |
| 5π |
| 6 |
| 1 |
| 2 |
| ||
| 2 |
∴ymax=
| 1 |
| 2 |
| ||
| 4 |
2+
| ||
| 4 |
故答案为:
2+
| ||
| 4 |
点评:本题考查积化和差公式的运用,将y=sin(2x+
)sin(2x+
)转化为和差是关键,也是难点,属于中档题.
| π |
| 3 |
| π |
| 2 |
练习册系列答案
相关题目