题目内容
设函数
【答案】分析:由已知可求出g(x)的解析式,分类讨论出函数在各段上的单调性,进而求出函数的最值的表达式,进而可得h(a)的表达式,进而可求出h(a)的最小值.
解答:解:
当1≤x≤2时,g(x)max=1-a,g(x)min=1-2a(2分)
当2≤x≤3时,若0≤a≤1,则g(x)在[2,3]上递增,
g(x)max=2-3a,g(x)min=1-2a(4分)
当a>1时,则g(x)在[2,3]上递减,
g(x)max=1-2a,g(x)min=2-3a(6分)
∴
当
当a≥1时,g(x)max=1-a,g(x)min=2-3a(9分)
∴
(12分)
当a=
时,h(a)取最小值为
(14分)
点评:本题考查的知识点是函数的最值及其几何意义,分段函数,其中分段函数分段处理是解答此类问题的常用方法.
解答:解:
当1≤x≤2时,g(x)max=1-a,g(x)min=1-2a(2分)
当2≤x≤3时,若0≤a≤1,则g(x)在[2,3]上递增,
g(x)max=2-3a,g(x)min=1-2a(4分)
当a>1时,则g(x)在[2,3]上递减,
g(x)max=1-2a,g(x)min=2-3a(6分)
∴
当
当a≥1时,g(x)max=1-a,g(x)min=2-3a(9分)
∴
当a=
点评:本题考查的知识点是函数的最值及其几何意义,分段函数,其中分段函数分段处理是解答此类问题的常用方法.
练习册系列答案
相关题目