题目内容
(1)求数列{an}的通项公式;
(2)求
| bn+1 |
| an+1 |
| 1+bn |
| an |
(3)求证:(1+b1)(1+b2)…(1+bn)<
| 10 |
| 3 |
分析:(1)由题意知:an=2an-1+1,a1=1,从而易得an+1=2(an-1+1),利用等比数列的通项公式可求得数列{an}的通项公式;
(2)由题意,a1=1,b1=1,S1=0,当2≤n≤2014时,Sn=Sn-1+
,bn=an•Sn,而Sn=S1+
+
+…+
,从而可得
=
+
+…+
,
=
+
+…+
+
,于是易求
-
(n∈N*,n≤2014)的值;
(3)由(2)知,知
=
,b1=a1=1,b2=3,a2=3,于是易求
=2(
+
+
+…+
),将所证的关系式转化为证明
+
+…+
+
<
即可,即证1+
+
+…+
<
,利用放缩法可证得结论.
(2)由题意,a1=1,b1=1,S1=0,当2≤n≤2014时,Sn=Sn-1+
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| bn+1 |
| an+1 |
| 1+bn |
| an |
(3)由(2)知,知
| 1+bn |
| bn+1 |
| an |
| an+1 |
|
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| 5 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 5 |
| 3 |
解答:解:(1)由题意知:an=2an-1+1,a1=1,
∴an+1=2(an-1+1),
∴an+1=(a1+1)•2n-1=2n,
∴an=2n-1(n∈N*,n≤2014).
(2)由题意,a1=1,b1=1,S1=0,
当2≤n≤2014时,Sn=Sn-1+
,bn=an•Sn,
此时,Sn=S1+
+
+…+
,
∴bn=an(
+
+…+
),
∴
=
+
+…+
,
∴
=
+
+…+
+
,
∴
-
=
,
∴
-
=0,
当n=1时,
-
=
-
=-1,
综上,
-
=
;
(3)当n=1时,左=1+b1=2,右=
b1=
,
此时,1+b1<
b1,
当2≤n≤2014时,由(2)知
=
,
又b1=a1=1,b2=3,a2=3,
∴
=
•
•
…
•(1+bn)
=
•
•
…
•(1+bn)
=
•
•(1+bn)
=2•(
+
)
=2(
+
+
+…+
)
即要证明的不等式转化为证明:
+
+…+
+
<
,
即证明1+
+
+…+
<
,
又an=2n-1=4•2n-2-1>3•2n-2(n≥3),
∴1+
+
+…+
<1+
+
+
+…+
=1+
=1+
(1-
)<1+
=
.
∴(1+b1)(1+b2)…(1+bn)<
b1b2…bn.
综上,(1+b1)(1+b2)…(1+bn)<
b1b2…bn(n∈N*,n≤2014)成立.
∴an+1=2(an-1+1),
∴an+1=(a1+1)•2n-1=2n,
∴an=2n-1(n∈N*,n≤2014).
(2)由题意,a1=1,b1=1,S1=0,
当2≤n≤2014时,Sn=Sn-1+
| 1 |
| an-1 |
此时,Sn=S1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴bn=an(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
∴
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
∴
| bn+1 |
| an+1 |
| 1+bn |
| an |
当n=1时,
| b2 |
| a2 |
| 1+b1 |
| a1 |
| 3 |
| 3 |
| 1+1 |
| 1 |
综上,
| bn+1 |
| an+1 |
| 1+bn |
| an |
|
(3)当n=1时,左=1+b1=2,右=
| 10 |
| 3 |
| 10 |
| 3 |
此时,1+b1<
| 10 |
| 3 |
当2≤n≤2014时,由(2)知
| 1+bn |
| bn+1 |
| an |
| an+1 |
又b1=a1=1,b2=3,a2=3,
∴
|
=
| 1+b1 |
| b1b2 |
| 1+b2 |
| b3 |
| 1+b3 |
| b4 |
| 1+bn-1 |
| bn |
=
| 2 |
| 3 |
| a2 |
| a3 |
| a3 |
| a4 |
| an-1 |
| an |
=
| 2 |
| 3 |
| a2 |
| an |
=2•(
| 1 |
| an |
| bn |
| an |
=2(
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
即要证明的不等式转化为证明:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| 5 |
| 3 |
即证明1+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 5 |
| 3 |
又an=2n-1=4•2n-2-1>3•2n-2(n≥3),
∴1+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 3 |
| 1 |
| 3•2 |
| 1 |
| 3•22 |
| 1 |
| 3•2n-2 |
=1+
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 2n-1 |
| 2 |
| 3 |
| 5 |
| 3 |
∴(1+b1)(1+b2)…(1+bn)<
| 10 |
| 3 |
综上,(1+b1)(1+b2)…(1+bn)<
| 10 |
| 3 |
点评:本题考查数列的求和,着重考查数列的递推式的应用,考查程序框图的理解与应用,突出等价转化思想与抽象思维能力的考查,属于难题.
练习册系列答案
相关题目