题目内容

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为
4
5
的直线被C所截线段的中点坐标.
分析:(Ⅰ)根据题意,将(0,4)代入C的方程得b的值,进而由椭圆的离心率为
3
5
,结合椭圆的性质,可得
c2
a2
=
a2-b2
a2
=
9
25
;解可得a的值,将a、b的值代入方程,可得椭圆的方程.
(Ⅱ)根据题意,可得直线的方程,设直线与C的交点为A(x1,y1),B(x2,y2),联立直线与椭圆的方程,化简可得方程x2-3x-8=0,解可得x1与x2的值,由中点坐标公式可得中点的横坐标,将其代入直线方程,可得中点的纵坐标,即可得答案.
解答:解:(Ⅰ)根据题意,椭圆过点(0,4),
将(0,4)代入C的方程得
16
b2
=1
,即b=4
e=
c
a
=
3
5
c2
a2
=
a2-b2
a2
=
9
25

1-
16
a2
=
9
25
,∴a=5
∴C的方程为
x2
25
+
y2
16
=1


(Ⅱ)过点(3,0)且斜率为
4
5
的直线方程为y=
4
5
(x-3)

设直线与C的交点为A(x1,y1),B(x2,y2),
将直线方程y=
4
5
(x-3)
代入C的方程,得
x2
25
+
(x-3)2
25
=1

即x2-3x-8=0,解得x1=
3-
41
2
x2=
3+
41
2

∴AB的中点坐标
.
x
=
x1+x2
2
=
3
2

.
y
=
y1+y2
2
=
2
5
(x1+x2-6)=-
6
5

即中点为(
3
2
,-
6
5
)
点评:本题考查椭圆的性质以及椭圆与直线相交的有关性质,涉及直线与椭圆问题,一般要联立两者的方程,转化为一元二次方程,由韦达定理分析解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网