题目内容

18.点集{(x,y)|(|x|-1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是(  )
A.$\frac{16π}{3}+2\sqrt{3}$B.$\frac{16π}{3}+4\sqrt{3}$C.$\frac{24π}{3}+2\sqrt{3}$D.$\frac{24π}{3}+4\sqrt{3}$

分析 由曲线的方程可得,曲线关于两个坐标轴及原点都是对称的,故画出图象,结合图象求得围成的曲线的面积.

解答 解:点集{(x,y)|(|x|-1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.
由图可得面积S=${S}_{菱形}+\frac{4}{3}{S}_{圆}$=$\frac{1}{2}×2\sqrt{3}×2$+$\frac{4}{3}×π×4$=$\frac{16π}{3}$+2$\sqrt{3}$.
故选:A.

点评 本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网