题目内容
已知数列{an}满足a1=2,an+1=
,n∈N*
(1)设bn=
,求数列bn的通项公式.
(2)设cn=an•(n2+1)-1,dn=
,求数列{dn}的前n项和Sn.
| 2n+1an | ||
(n+
|
(1)设bn=
| 2n |
| an |
(2)设cn=an•(n2+1)-1,dn=
| 2n |
| cn•cn+1 |
(1)由bn=
,bn+1=
,得到an=
,an+1=
,b1=
=1.
代入an+1=
,化为bn+1-bn=n+
.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
+(n-2)+
+…+1+
+1
=
+
+1
=
.
(2)由(1)可得an=
=
,
∴cn=
×(n2+1)-1=2n+1-1.
∴dn=
=
=
(
-
),
∴Sn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
-
.
| 2n |
| an |
| 2n+1 |
| an+1 |
| 2n |
| bn |
| 2n+1 |
| bn+1 |
| 2 |
| a1 |
代入an+1=
| 2n+1an | ||
(n+
|
| 1 |
| 2 |
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| n(n-1) |
| 2 |
| n-1 |
| 2 |
=
| n2+1 |
| 2 |
(2)由(1)可得an=
| 2n |
| bn |
| 2n+1 |
| n2+1 |
∴cn=
| 2n+1 |
| n2+1 |
∴dn=
| 2n |
| cncn+1 |
| 2n |
| (2n+1-1)(2n+2-1) |
| 1 |
| 2 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n+2-1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 23-1 |
| 1 |
| 24-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n+2-1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+2-1 |
=
| 1 |
| 6 |
| 1 |
| 2n+3-2 |
练习册系列答案
相关题目