题目内容

已知数列{an}满足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
,n∈N*

(1)设bn=
2n
an
,求数列bn的通项公式

(2)设cn=an•(n2+1)-1dn=
2n
cncn+1
,求数列{dn}的前n项和Sn
(1)由bn=
2n
an
bn+1=
2n+1
an+1
,得到an=
2n
bn
an+1=
2n+1
bn+1
b1=
2
a1
=1

代入an+1=
2n+1an
(n+
1
2
)an+2n
,化为bn+1-bn=n+
1
2

∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
1
2
+(n-2)+
1
2
+…+1+
1
2
+1
=
n(n-1)
2
+
n-1
2
+1

=
n2+1
2

(2)由(1)可得an=
2n
bn 
=
2n+1
n2+1

cn=
2n+1
n2+1
×(n2+1)-1
=2n+1-1.
dn=
2n
cncn+1
=
2n
(2n+1-1)(2n+2-1)
=
1
2
(
1
2n+1-1
-
1
2n+2-1
)

∴Sn=
1
2
[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)+
…+(
1
2n+1-1
-
1
2n+2-1
)]

=
1
2
(
1
3
-
1
2n+2-1
)

=
1
6
-
1
2n+3-2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网